亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multimodal single-cell profiling of intrahepatic cholangiocarcinoma defines hyperactivated Tregs as a potential therapeutic target

FOXP3型 生物 免疫学 效应器 CD8型 免疫系统 转录因子 癌症研究 髓样 基因 遗传学
作者
Giorgia Alvisi,Alberto Termanini,Cristiana Soldani,Federica Portale,Roberta Carriero,Karolina Pilipow,Guido Costa,Michela Anna Polidoro,Barbara Franceschini,Ines Malenica,Simone Puccio,Veronica Lise,Giovanni Galletti,Veronica Zanon,Federico Colombo,Gabriele De Simone,Michele Tufano,Alessio Aghemo,Luca Di Tommaso,Clelia Peano,Javier Cibella,Matteo Iannacone,Rahul Roychoudhuri,Teresa Manzo,Matteo Donadon,Guido Torzilli,Paolo Kunderfranco,Diletta Di Mitri,Enrico Lugli,Ana Lleò
出处
期刊:Journal of Hepatology [Elsevier]
卷期号:77 (5): 1359-1372 被引量:48
标识
DOI:10.1016/j.jhep.2022.05.043
摘要

•Human iCCA is preferentially infiltrated by CD4+ FOXP3+ Tregs showing a highly activated phenotype. •Tumor Tregs display a gene program and transcription factor activities indicating superior immunosuppressive potential. •MEOX1 transcription factor specifies the transcriptional and genetic identity of tumor Tregs. •MEOX1-induced Tregs strongly correlate with worse overall survival in iCCA. Background & Aims The landscape and function of the immune infiltrate of intrahepatic cholangiocarcinoma (iCCA), a rare, yet aggressive tumor of the biliary tract, remains poorly characterized, limiting development of successful immunotherapies. Herein, we aimed to define the molecular characteristics of tumor-infiltrating leukocytes with a special focus on CD4+ regulatory T cells (Tregs). Methods We used high-dimensional single-cell technologies to characterize the T-cell and myeloid compartments of iCCA tissues, comparing these with their tumor-free peritumoral and circulating counterparts. We further used genomics and cellular assays to define the iCCA-specific role of a novel transcription factor, mesenchyme homeobox 1 (MEOX1), in Treg biology. Results We found poor infiltration of putative tumor-specific CD39+ CD8+ T cells accompanied by abundant infiltration of hyperactivated CD4+ Tregs. Single-cell RNA-sequencing identified an altered network of transcription factors in iCCA-infiltrating compared to peritumoral T cells, suggesting reduced effector functions by tumor-infiltrating CD8+ T cells and enhanced immunosuppression by CD4+ Tregs. Specifically, we found that expression of MEOX1 was highly enriched in tumor-infiltrating Tregs, and demonstrated that MEOX1 overexpression is sufficient to reprogram circulating Tregs to acquire the transcriptional and epigenetic landscape of tumor-infiltrating Tregs. Accordingly, enrichment of the MEOX1-dependent gene program in Tregs was strongly associated with poor prognosis in a large cohort of patients with iCCA. Conclusions We observed abundant infiltration of hyperactivated CD4+ Tregs in iCCA tumors along with reduced CD8+ T-cell effector functions. Interfering with hyperactivated Tregs should be explored as an approach to enhance antitumor immunity in iCCA. Lay summary Immune cells have the potential to slow or halt the progression of tumors. However, some tumors, such as intrahepatic cholangiocarcinoma, are associated with very limited immune responses (and infiltration of cancer-targeting immune cells). Herein, we show that a specific population of regulatory T cells (a type of immune cell that actually suppresses the immune response) are hyperactivated in intrahepatic cholangiocarcinoma. Targeting these cells could enable cancer-targeting immune cells to act more effectively and should be looked at as a potential therapeutic approach to this aggressive cancer type. The landscape and function of the immune infiltrate of intrahepatic cholangiocarcinoma (iCCA), a rare, yet aggressive tumor of the biliary tract, remains poorly characterized, limiting development of successful immunotherapies. Herein, we aimed to define the molecular characteristics of tumor-infiltrating leukocytes with a special focus on CD4+ regulatory T cells (Tregs). We used high-dimensional single-cell technologies to characterize the T-cell and myeloid compartments of iCCA tissues, comparing these with their tumor-free peritumoral and circulating counterparts. We further used genomics and cellular assays to define the iCCA-specific role of a novel transcription factor, mesenchyme homeobox 1 (MEOX1), in Treg biology. We found poor infiltration of putative tumor-specific CD39+ CD8+ T cells accompanied by abundant infiltration of hyperactivated CD4+ Tregs. Single-cell RNA-sequencing identified an altered network of transcription factors in iCCA-infiltrating compared to peritumoral T cells, suggesting reduced effector functions by tumor-infiltrating CD8+ T cells and enhanced immunosuppression by CD4+ Tregs. Specifically, we found that expression of MEOX1 was highly enriched in tumor-infiltrating Tregs, and demonstrated that MEOX1 overexpression is sufficient to reprogram circulating Tregs to acquire the transcriptional and epigenetic landscape of tumor-infiltrating Tregs. Accordingly, enrichment of the MEOX1-dependent gene program in Tregs was strongly associated with poor prognosis in a large cohort of patients with iCCA. We observed abundant infiltration of hyperactivated CD4+ Tregs in iCCA tumors along with reduced CD8+ T-cell effector functions. Interfering with hyperactivated Tregs should be explored as an approach to enhance antitumor immunity in iCCA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千寻完成签到,获得积分10
1秒前
戴哈哈发布了新的文献求助10
1秒前
小马甲应助戴哈哈采纳,获得10
5秒前
冰冰完成签到,获得积分10
14秒前
19秒前
千寻发布了新的文献求助10
22秒前
温暖的盼山应助柠檬采纳,获得10
35秒前
Ricardo完成签到 ,获得积分10
41秒前
zsmj23完成签到 ,获得积分0
1分钟前
阳和启蛰完成签到 ,获得积分10
1分钟前
2分钟前
CATH完成签到 ,获得积分10
2分钟前
翟半仙发布了新的文献求助20
2分钟前
翟半仙完成签到,获得积分20
2分钟前
hzc应助科研通管家采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
hzc应助科研通管家采纳,获得10
2分钟前
3分钟前
pyzhu完成签到,获得积分10
3分钟前
zly完成签到 ,获得积分10
3分钟前
斯文果汁完成签到,获得积分10
3分钟前
4分钟前
guan完成签到,获得积分10
4分钟前
guan发布了新的文献求助10
4分钟前
努力的小胡完成签到 ,获得积分10
5分钟前
努力的小胡关注了科研通微信公众号
5分钟前
Tim完成签到 ,获得积分10
6分钟前
33完成签到,获得积分10
6分钟前
caca完成签到,获得积分10
6分钟前
6分钟前
禹奎发布了新的文献求助10
6分钟前
pass完成签到 ,获得积分10
7分钟前
7分钟前
乐生发布了新的文献求助10
7分钟前
禹奎发布了新的文献求助10
7分钟前
大个应助乐生采纳,获得10
7分钟前
禹奎完成签到,获得积分10
7分钟前
pluto应助guan采纳,获得10
7分钟前
盒子应助guan采纳,获得10
7分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133930
求助须知:如何正确求助?哪些是违规求助? 2784836
关于积分的说明 7768641
捐赠科研通 2440188
什么是DOI,文献DOI怎么找? 1297291
科研通“疑难数据库(出版商)”最低求助积分说明 624911
版权声明 600791