Language network self-inhibition and semantic similarity in first-episode schizophrenia: A computational-linguistic and effective connectivity approach

语义相似性 语义记忆 心理学 精神分裂症(面向对象编程) 语言生产 认知心理学 相似性(几何) 语义网络 计算机科学 人工智能 语义学(计算机科学) 自然语言处理 神经科学 认知 精神科 程序设计语言 图像(数学)
作者
María Francisca Alonso-Sánchez,Roberto Limongi,Joseph S. Gati,Lena Palaniyappan
出处
期刊:Schizophrenia Research [Elsevier]
卷期号:259: 97-103 被引量:16
标识
DOI:10.1016/j.schres.2022.04.007
摘要

A central feature of schizophrenia is the disorganization and impoverishment of language. Recently, we observed higher semantic similarity in first-episode-schizophrenia (FES) patients. In this study, we investigate if this aberrant similarity relates to the ‘causal’ connectivity between two key nodes of the word production system: inferior frontal gyrus (IFG) and the semantic-hub at the ventral anterior temporal lobe (vATL). Resting-state fMRI scans were collected from 60 participants (30 untreated FES and 30 healthy controls). The semantic distance was measured with the CoVec semantic tool based on GloVe. A spectral dynamic causal model with Parametrical Empirical Bayes was constructed modelling the intrinsic self-inhibitory and extrinsic-excitatory connections within the brain regions. We estimated the parameters of a fully connected model with the semantic distance as a covariate. FES patients chose words with higher semantic similarity when describing the pictures compared to the HC group. Among patients, an increased semantic similarity was related with an increase in intrinsic connections within both the vATL and IFG, suggesting that reduced ‘synaptic gain’ in these regions likely contribute to aberrant sampling of the semantic space during discourse in schizophrenia. Lexical impoverishment relates to increased self-inhibition in both the IFG and vATL. The associated reduction in synaptic gain may relate to reduced precision of locally generated neural activity, forcing the choice of words that are already ‘activated’ in a lexical network. One approach to improve word sampling may be via promoting synaptic gain via supra-physiological stimulation within the Broca's-vATL network; this proposal needs verification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Draeck发布了新的文献求助10
刚刚
kingwhitewing发布了新的文献求助10
刚刚
1秒前
clarkq发布了新的文献求助10
1秒前
1秒前
GGZ完成签到,获得积分10
1秒前
15860936613完成签到 ,获得积分10
1秒前
可爱的函函应助a方舟采纳,获得10
1秒前
2秒前
ee关闭了ee文献求助
2秒前
2秒前
3秒前
Hungrylunch给woshiwuziq的求助进行了留言
3秒前
传奇3应助cruise采纳,获得10
3秒前
艺玲发布了新的文献求助10
3秒前
3秒前
我是老大应助sun采纳,获得10
4秒前
柔弱煎饼完成签到,获得积分10
4秒前
SY发布了新的文献求助10
4秒前
暗能量完成签到,获得积分10
4秒前
刘星星完成签到,获得积分10
4秒前
科研通AI5应助yan采纳,获得10
5秒前
蒋念寒发布了新的文献求助10
5秒前
zyp完成签到,获得积分10
5秒前
dldddz完成签到,获得积分10
5秒前
二二二完成签到,获得积分20
5秒前
动听导师发布了新的文献求助10
6秒前
龙潜筱完成签到,获得积分10
6秒前
明天过后完成签到,获得积分10
6秒前
6秒前
在水一方应助weddcf采纳,获得10
6秒前
7秒前
沉默越彬完成签到,获得积分10
7秒前
Nicho发布了新的文献求助10
8秒前
8秒前
蓦然回首完成签到,获得积分10
8秒前
8秒前
Owen应助七大洋的风采纳,获得10
9秒前
9秒前
科研通AI5应助一平采纳,获得80
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678