A Review on Convolutional Neural Networks for Brain Tumor Segmentation: Methods, Datasets, Libraries, and Future Directions

卷积神经网络 分割 计算机科学 人工智能 深度学习 机器学习 模式识别(心理学)
作者
Manoj Kumar Balwant
出处
期刊:Irbm [Elsevier]
卷期号:43 (6): 521-537 被引量:24
标识
DOI:10.1016/j.irbm.2022.05.002
摘要

Accurate and reliable segmentation of brain tumors from MRI images helps in planning an enhanced treatment and increases the life expectancy of patients. However, the manual segmentation of brain tumors is subjective and more prone to errors. Nonetheless, the recent advances in convolutional neural network (CNN)-based methods have exhibited outstanding potential in robust segmentation of brain tumors. This article comprehensively investigates recent advances in CNN-based methods for automatic segmentation of brain tumors from MRI images. It examines popular deep learning (DL) libraries/tools for an expeditious and effortless implementation of CNN models. Furthermore, a critical assessment of current DL architectures is delineated along with the scope of improvement. In this work, more than 50 scientific papers from 2014-2020 are selected using Google Scholar and PubMed. Also, the leading journals related to our work along with proceedings from major conferences such as MICCAI, MIUA and ECCV are retrieved. This research investigated various annual challenges too related to this work including Multimodal Brain Tumor Segmentation Challenge (MICCAI BRATS) and Ischemic Stroke Lesion Segmentation Challenge (ISLES). After a systematic literature search pertinent to the theme, we found that principally there exist three variations of CNN architecture for brain tumor segmentation: single-path and multi-path, fully convolutional, and cascaded CNNs. The respective performances of most automated methods based on CNN are appraised on the BraTS dataset, provided as a part of the MICCAI Multimodal Brain Tumor Segmentation challenge held annually since 2012. Notwithstanding the remarkable potential of CNN-based methods, reliable and robust segmentation of brain tumors continues to be an intractable challenge. This is due to the intricate anatomy of the brain, variability in its appearance, and imperfection in image acquisition. Moreover, owing to the small size of MRI datasets, CNN-based methods cannot operate with their full capacity, as demonstrated with large scale datasets, such as ImageNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助浮生采纳,获得10
1秒前
所所应助ran采纳,获得10
1秒前
colddie发布了新的文献求助10
1秒前
2秒前
3秒前
默念发布了新的文献求助10
8秒前
Hello应助asd采纳,获得10
8秒前
默念完成签到,获得积分10
14秒前
15秒前
luanzhaohui完成签到,获得积分10
16秒前
自然的听寒完成签到 ,获得积分10
16秒前
17秒前
加油鸭发布了新的文献求助10
17秒前
19秒前
only完成签到,获得积分20
20秒前
xiaobei发布了新的文献求助30
20秒前
22秒前
26秒前
迷人幻波发布了新的文献求助10
26秒前
zmy发布了新的文献求助10
26秒前
orixero应助zhlh采纳,获得10
27秒前
非一样的感觉完成签到,获得积分10
27秒前
852应助xiaobei采纳,获得30
28秒前
不配.应助科研通管家采纳,获得20
28秒前
siyu0416应助科研通管家采纳,获得10
28秒前
小马甲应助科研通管家采纳,获得10
28秒前
田様应助科研通管家采纳,获得10
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
30秒前
方超完成签到,获得积分10
31秒前
32秒前
ured发布了新的文献求助10
32秒前
略略略完成签到 ,获得积分10
33秒前
34秒前
36秒前
有使不完牛劲的正主完成签到,获得积分10
37秒前
飞翔的丫蛋完成签到,获得积分0
37秒前
彪壮的若男完成签到 ,获得积分10
38秒前
38秒前
小蘑菇应助憨憨采纳,获得30
42秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774894
关于积分的说明 7724629
捐赠科研通 2430451
什么是DOI,文献DOI怎么找? 1291102
科研通“疑难数据库(出版商)”最低求助积分说明 622063
版权声明 600323