A Review on Convolutional Neural Networks for Brain Tumor Segmentation: Methods, Datasets, Libraries, and Future Directions

卷积神经网络 分割 计算机科学 人工智能 深度学习 机器学习 模式识别(心理学)
作者
Manoj Kumar Balwant
出处
期刊:Irbm [Elsevier BV]
卷期号:43 (6): 521-537 被引量:24
标识
DOI:10.1016/j.irbm.2022.05.002
摘要

Accurate and reliable segmentation of brain tumors from MRI images helps in planning an enhanced treatment and increases the life expectancy of patients. However, the manual segmentation of brain tumors is subjective and more prone to errors. Nonetheless, the recent advances in convolutional neural network (CNN)-based methods have exhibited outstanding potential in robust segmentation of brain tumors. This article comprehensively investigates recent advances in CNN-based methods for automatic segmentation of brain tumors from MRI images. It examines popular deep learning (DL) libraries/tools for an expeditious and effortless implementation of CNN models. Furthermore, a critical assessment of current DL architectures is delineated along with the scope of improvement. In this work, more than 50 scientific papers from 2014-2020 are selected using Google Scholar and PubMed. Also, the leading journals related to our work along with proceedings from major conferences such as MICCAI, MIUA and ECCV are retrieved. This research investigated various annual challenges too related to this work including Multimodal Brain Tumor Segmentation Challenge (MICCAI BRATS) and Ischemic Stroke Lesion Segmentation Challenge (ISLES). After a systematic literature search pertinent to the theme, we found that principally there exist three variations of CNN architecture for brain tumor segmentation: single-path and multi-path, fully convolutional, and cascaded CNNs. The respective performances of most automated methods based on CNN are appraised on the BraTS dataset, provided as a part of the MICCAI Multimodal Brain Tumor Segmentation challenge held annually since 2012. Notwithstanding the remarkable potential of CNN-based methods, reliable and robust segmentation of brain tumors continues to be an intractable challenge. This is due to the intricate anatomy of the brain, variability in its appearance, and imperfection in image acquisition. Moreover, owing to the small size of MRI datasets, CNN-based methods cannot operate with their full capacity, as demonstrated with large scale datasets, such as ImageNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜睿思发布了新的文献求助10
1秒前
晶晶发布了新的文献求助10
1秒前
烂漫念文发布了新的文献求助10
4秒前
科研通AI5应助myy采纳,获得10
6秒前
lemonkane完成签到,获得积分10
7秒前
8秒前
9秒前
toda_erica完成签到,获得积分10
10秒前
从容发布了新的文献求助10
11秒前
单薄的新梅完成签到,获得积分10
11秒前
11秒前
12秒前
suo发布了新的文献求助10
12秒前
lzx应助舒服的牛排采纳,获得100
13秒前
可爱的函函应助rong采纳,获得10
14秒前
隐形曼青应助菠萝贺贺采纳,获得10
15秒前
活力翠霜发布了新的文献求助10
16秒前
18秒前
18秒前
欢呼的飞荷完成签到 ,获得积分10
19秒前
20秒前
crazy发布了新的文献求助10
23秒前
taowang发布了新的文献求助10
25秒前
25秒前
苏苏完成签到,获得积分10
27秒前
27秒前
28秒前
28秒前
惠小之完成签到,获得积分10
30秒前
菠萝贺贺发布了新的文献求助10
31秒前
隐形曼青应助卜凡采纳,获得10
31秒前
yadi发布了新的文献求助10
32秒前
PhDshi发布了新的文献求助10
32秒前
crazy完成签到,获得积分10
32秒前
请叫我风吹麦浪完成签到,获得积分0
32秒前
YY发布了新的文献求助10
33秒前
Xxsy发布了新的文献求助20
33秒前
舒服的牛排完成签到,获得积分10
34秒前
斯文败类应助suo采纳,获得10
34秒前
沙福林完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991794
求助须知:如何正确求助?哪些是违规求助? 3532981
关于积分的说明 11260197
捐赠科研通 3272241
什么是DOI,文献DOI怎么找? 1805664
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809405