Point and interval forecasting of ultra-short-term wind power based on a data-driven method and hybrid deep learning model

期限(时间) 风电预测 风力发电 区间(图论) 电力系统 气象学 深度学习 计算机科学 人工智能 点(几何) 功率(物理) 计量经济学 工程类 地理 经济 数学 物理 电气工程 组合数学 量子力学 几何学
作者
Dongxiao Niu,Lijie Sun,Min Yu,Keke Wang
出处
期刊:Energy [Elsevier BV]
卷期号:254: 124384-124384 被引量:113
标识
DOI:10.1016/j.energy.2022.124384
摘要

Accurate and reliable wind power forecasting (WPF) is significant for ensuring power systems’ economic operation and safe dispatching and for reducing the technical and economic risks faced by power market participants. Based on data-driven and deep-learning methods, we propose a hybrid ultra-short-term WPF framework that can achieve accurate point and interval WPF. First, the multi-sourced and multi-dimensional data sets of wind power plant are preprocessed. Second, feature selection (FS) is conducted to eliminate redundant features. Third, the wind power sequence is decomposed through the variational modal decomposition improved by grey wolf optimization (GWO-VMD). Then, the BiLSTM-Attention model is established to predict each subsequence of wind power. Finally, the prediction intervals of wind power under different confidence levels are estimated by kernel density estimation with the Gaussian kernel function (KDE-Gaussian). The proposed FS-GWO-VMD-BiLSTM-Attention forecasting framework is compared with benchmark models to verify its practicability and reliability. Compared with the BPNN, the mean absolute error, mean absolute percentage error, and mean square error of the FS-GWO-VMD-BiLSTM-Attention model are reduced by 94.03%, 85.82%, and 99.51%, respectively. Furthermore, according to the coverage width-based criterion, KDE-Gaussian is superior to other interval forecasting methods, which can achieve more reliable forecasting of prediction interval. • A data-driven method based on multiple features is adopted for wind power forecasting. • Feature selection and wind power decomposition can reduce the impact of noise data. • A BiLSTM model optimized by attention mechanism improves point forecasting accuracy. • Kernel density estimation with Gaussian function is utilized for interval forecasting. • The superiority of the proposed forecasting methods is verified by different metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen应助科研通管家采纳,获得10
1秒前
Tourist应助科研通管家采纳,获得50
2秒前
Tourist应助科研通管家采纳,获得20
2秒前
dinghaifeng应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
chen应助科研通管家采纳,获得10
2秒前
2秒前
dinghaifeng应助科研通管家采纳,获得10
2秒前
2秒前
rocket完成签到,获得积分10
2秒前
2秒前
2秒前
tuanhust应助科研通管家采纳,获得30
2秒前
4秒前
Lily_0_o发布了新的文献求助10
5秒前
6秒前
7秒前
Kai发布了新的文献求助10
7秒前
7秒前
7秒前
9秒前
Merlin应助陈三三采纳,获得30
10秒前
想自由完成签到,获得积分10
10秒前
IyGnauH发布了新的文献求助10
11秒前
hehe发布了新的文献求助10
12秒前
张童鞋完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
16秒前
16秒前
Sky完成签到,获得积分10
16秒前
哈哈哈哈发布了新的文献求助10
18秒前
现代小丸子完成签到 ,获得积分10
19秒前
llxiaomianyang完成签到,获得积分10
20秒前
熊i发布了新的文献求助10
21秒前
小麻薯发布了新的文献求助10
21秒前
23秒前
俭朴青烟发布了新的文献求助30
23秒前
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958087
求助须知:如何正确求助?哪些是违规求助? 3504271
关于积分的说明 11117667
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788396
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802541