Point and interval forecasting of ultra-short-term wind power based on a data-driven method and hybrid deep learning model

风电预测 风力发电 区间(图论) 水准点(测量) 核密度估计 均方误差 电力系统 计算机科学 高斯分布 子序列 数学优化
作者
Dongxiao Niu,Lijie Sun,Min Yu,Keke Wang
出处
期刊:Energy [Elsevier]
卷期号:: 124384-124384
标识
DOI:10.1016/j.energy.2022.124384
摘要

Accurate and reliable wind power forecasting (WPF) is significant for ensuring power systems’ economic operation and safe dispatching and for reducing the technical and economic risks faced by power market participants. Based on data-driven and deep-learning methods, we propose a hybrid ultra-short-term WPF framework that can achieve accurate point and interval WPF. First, the multi-sourced and multi-dimensional data sets of wind power plant are preprocessed. Second, feature selection (FS) is conducted to eliminate redundant features. Third, the wind power sequence is decomposed through the variational modal decomposition improved by grey wolf optimization (GWO-VMD). Then, the BiLSTM-Attention model is established to predict each subsequence of wind power. Finally, the prediction intervals of wind power under different confidence levels are estimated by kernel density estimation with the Gaussian kernel function (KDE-Gaussian). The proposed FS-GWO-VMD-BiLSTM-Attention forecasting framework is compared with benchmark models to verify its practicability and reliability. Compared with the BPNN, the mean absolute error, mean absolute percentage error, and mean square error of the FS-GWO-VMD-BiLSTM-Attention model are reduced by 94.03%, 85.82%, and 99.51%, respectively. Furthermore, according to the coverage width-based criterion, KDE-Gaussian is superior to other interval forecasting methods, which can achieve more reliable forecasting of prediction interval. • A data-driven method based on multiple features is adopted for wind power forecasting. • Feature selection and wind power decomposition can reduce the impact of noise data. • A BiLSTM model optimized by attention mechanism improves point forecasting accuracy. • Kernel density estimation with Gaussian function is utilized for interval forecasting. • The superiority of the proposed forecasting methods is verified by different metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿元发布了新的文献求助10
3秒前
linfordlu完成签到,获得积分0
4秒前
AireenBeryl531完成签到,获得积分0
7秒前
科研小白完成签到 ,获得积分10
13秒前
ttt完成签到,获得积分10
14秒前
爱吃萝卜的Bob完成签到,获得积分10
16秒前
giao完成签到,获得积分10
19秒前
abc完成签到 ,获得积分10
24秒前
ffyzsl完成签到,获得积分10
26秒前
小李叭叭完成签到,获得积分10
34秒前
CHyaa完成签到,获得积分10
36秒前
拉塞尔....完成签到 ,获得积分10
37秒前
strive完成签到 ,获得积分10
39秒前
幽若宝宝完成签到,获得积分10
39秒前
大萱完成签到 ,获得积分10
40秒前
夷陵老祖胃无限完成签到,获得积分10
44秒前
飞竹天寻完成签到,获得积分20
44秒前
阿咚完成签到,获得积分10
46秒前
seedcui完成签到,获得积分10
47秒前
不吃辣活不了完成签到 ,获得积分10
48秒前
嗯哼完成签到,获得积分10
53秒前
54秒前
Liar应助科研通管家采纳,获得10
54秒前
传奇3应助科研通管家采纳,获得10
54秒前
彭于晏应助科研通管家采纳,获得10
54秒前
Clover04应助科研通管家采纳,获得10
54秒前
54秒前
FashionBoy应助科研通管家采纳,获得10
54秒前
Liar应助科研通管家采纳,获得10
54秒前
bkagyin应助科研通管家采纳,获得10
54秒前
大模型应助科研通管家采纳,获得20
54秒前
54秒前
传奇3应助科研通管家采纳,获得10
54秒前
55秒前
嗯哼发布了新的文献求助10
58秒前
bkagyin应助我爱科研研研研采纳,获得10
59秒前
111完成签到,获得积分10
59秒前
和谐的映梦完成签到,获得积分10
1分钟前
Tao完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790623
关于积分的说明 7795870
捐赠科研通 2447082
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626274
版权声明 601176