Identification of Human Protein Subcellular Location with Multiple Networks

计算机科学 亚细胞定位 鉴定(生物学) 人工智能 支持向量机 蛋白质亚细胞定位预测 嵌入 随机森林 机器学习 模式识别(心理学) 数据挖掘 生物 生物化学 植物 基因 细胞质
作者
Rui Wang,Lei Chen
出处
期刊:Current Proteomics [Bentham Science]
卷期号:19 (4): 344-356 被引量:11
标识
DOI:10.2174/1570164619666220531113704
摘要

Background: Protein function is closely related to its location within the cell. Determination of protein subcellular location is helpful in uncovering its functions. However, traditional biological experiments to determine the subcellular location are of high cost and low efficiency, which cannot meet today’s needs. In recent years, many computational models have been set up to identify the subcellular location of proteins. Most models use features derived from protein sequences. Recently, features extracted from the protein-protein interaction (PPI) network have become popular in studying various protein-related problems. Objective: A novel model with features derived from multiple PPI networks was proposed to predict protein subcellular location. Methods: Protein features were obtained by a newly designed network embedding algorithm, Mnode2vec, which is a generalized version of the classic Node2vec algorithm. Two classic classification algorithms: support vector machine and random forest, were employed to build the model. Results: Such model provided good performance and was superior to the model with features extracted by Node2vec. Also, this model outperformed some classic models. Furthermore, Mnode2vec was found to produce powerful features when the path length was small. Conclusion: The proposed model can be a powerful tool to determine protein subcellular location, and Mnode2vec can efficiently extract informative features from multiple networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CGFHEMAN完成签到 ,获得积分10
刚刚
CodeCraft应助甜美的翠桃采纳,获得10
1秒前
书篆发布了新的文献求助10
4秒前
WindDreamer完成签到,获得积分10
4秒前
橘络发布了新的文献求助10
4秒前
12秒前
可可完成签到,获得积分10
13秒前
科研民工完成签到,获得积分10
14秒前
14秒前
充电宝应助叫我杰克采纳,获得10
15秒前
Jasper应助暴躁小兔采纳,获得10
16秒前
17秒前
17秒前
Flori完成签到 ,获得积分10
18秒前
18秒前
天真香氛发布了新的文献求助10
20秒前
cocolu应助猪猪hero采纳,获得10
21秒前
123发布了新的文献求助10
23秒前
24秒前
24秒前
孙捕发布了新的文献求助10
24秒前
小赵完成签到,获得积分10
25秒前
日富一日的fighter完成签到,获得积分10
26秒前
爱听歌橘子完成签到 ,获得积分20
27秒前
TTT完成签到,获得积分10
27秒前
zhangbh1990完成签到 ,获得积分10
28秒前
无亞完成签到,获得积分10
29秒前
凊嗏淡墨完成签到,获得积分10
30秒前
32秒前
九千岁完成签到 ,获得积分10
33秒前
酷波er应助亻圭采纳,获得10
34秒前
共享精神应助123采纳,获得10
34秒前
35秒前
外向的斓发布了新的文献求助10
36秒前
科研小白完成签到,获得积分10
37秒前
zhu完成签到,获得积分10
40秒前
41秒前
liyali完成签到,获得积分10
42秒前
舒心的泥猴桃完成签到,获得积分10
42秒前
科研小白完成签到 ,获得积分10
44秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461184
求助须知:如何正确求助?哪些是违规求助? 3054912
关于积分的说明 9045435
捐赠科研通 2744812
什么是DOI,文献DOI怎么找? 1505685
科研通“疑难数据库(出版商)”最低求助积分说明 695786
邀请新用户注册赠送积分活动 695205