Adversarial Evolving Neural Network for Longitudinal Knee Osteoarthritis Prediction

鉴别器 人工智能 计算机科学 分级(工程) 深度学习 卷积神经网络 骨关节炎 对抗制 纵向研究 模式识别(心理学) 机器学习 卷积(计算机科学) 人工神经网络 医学 数学 统计 病理 电信 土木工程 替代医学 探测器 工程类
作者
Kun Hu,Wenhua Wu,Wei Li,Milena Simić,Albert Y. Zomaya,Zhiyong Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (11): 3207-3217 被引量:14
标识
DOI:10.1109/tmi.2022.3181060
摘要

Knee osteoarthritis (KOA) as a disabling joint disease has doubled in prevalence since the mid-20th century. Early diagnosis for the longitudinal KOA grades has been increasingly important for effective monitoring and intervention. Although recent studies have achieved promising performance for baseline KOA grading, longitudinal KOA grading has been seldom studied and the KOA domain knowledge has not been well explored yet. In this paper, a novel deep learning architecture, namely adversarial evolving neural network (A-ENN), is proposed for longitudinal grading of KOA severity. As the disease progresses from mild to severe level, ENN involves the progression patterns for accurately characterizing the disease by comparing an input image it to the template images of different KL grades using convolution and deconvolution computations. In addition, an adversarial training scheme with a discriminator is developed to obtain the evolution traces. Thus, the evolution traces as fine-grained domain knowledge are further fused with the general convolutional image representations for longitudinal grading. Note that ENN can be applied to other learning tasks together with existing deep architectures, in which the responses characterize progressive representations. Comprehensive experiments on the Osteoarthritis Initiative (OAI) dataset were conducted to evaluate the proposed method. An overall accuracy was achieved as 62.7%, with the baseline, 12-month, 24-month, 36-month, and 48-month accuracy as 64.6%, 63.9%, 63.2%, 61.8% and 60.2%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hungrylunch应助woshiwuziq采纳,获得20
刚刚
合适苗条发布了新的文献求助10
刚刚
安静听白发布了新的文献求助10
刚刚
krystal发布了新的文献求助10
刚刚
1秒前
15122303完成签到,获得积分10
1秒前
lht完成签到 ,获得积分10
2秒前
传奇3应助纯真电源采纳,获得10
2秒前
环走鱼尾纹完成签到 ,获得积分10
2秒前
xiuxiu_27发布了新的文献求助10
3秒前
222完成签到,获得积分10
3秒前
zyz1132完成签到,获得积分10
3秒前
何处芳歇完成签到,获得积分10
4秒前
4秒前
LXYang完成签到,获得积分10
4秒前
4秒前
LL完成签到,获得积分10
4秒前
5秒前
5秒前
十月发布了新的文献求助20
6秒前
6秒前
针地很不戳完成签到,获得积分10
6秒前
7秒前
奋斗金连完成签到,获得积分10
7秒前
科研菜鸟完成签到,获得积分10
7秒前
圈圈发布了新的文献求助10
8秒前
zhanglh完成签到 ,获得积分10
8秒前
8秒前
Liu完成签到,获得积分10
8秒前
啊大大哇完成签到,获得积分10
8秒前
一平驳回了HEIKU应助
9秒前
9秒前
草莓奶昔完成签到 ,获得积分10
9秒前
cyx发布了新的文献求助10
9秒前
10秒前
littleJ完成签到,获得积分10
10秒前
Yolo发布了新的文献求助10
10秒前
阿尔法发布了新的文献求助10
11秒前
科研菜鸟发布了新的文献求助10
11秒前
Liu发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678