亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adversarial Evolving Neural Network for Longitudinal Knee Osteoarthritis Prediction

鉴别器 人工智能 计算机科学 分级(工程) 深度学习 卷积神经网络 骨关节炎 对抗制 纵向研究 模式识别(心理学) 机器学习 卷积(计算机科学) 人工神经网络 医学 数学 统计 病理 电信 土木工程 替代医学 探测器 工程类
作者
Kun Hu,Wenhua Wu,Wei Li,Milena Simić,Albert Y. Zomaya,Zhiyong Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (11): 3207-3217 被引量:10
标识
DOI:10.1109/tmi.2022.3181060
摘要

Knee osteoarthritis (KOA) as a disabling joint disease has doubled in prevalence since the mid-20th century. Early diagnosis for the longitudinal KOA grades has been increasingly important for effective monitoring and intervention. Although recent studies have achieved promising performance for baseline KOA grading, longitudinal KOA grading has been seldom studied and the KOA domain knowledge has not been well explored yet. In this paper, a novel deep learning architecture, namely adversarial evolving neural network (A-ENN), is proposed for longitudinal grading of KOA severity. As the disease progresses from mild to severe level, ENN involves the progression patterns for accurately characterizing the disease by comparing an input image it to the template images of different KL grades using convolution and deconvolution computations. In addition, an adversarial training scheme with a discriminator is developed to obtain the evolution traces. Thus, the evolution traces as fine-grained domain knowledge are further fused with the general convolutional image representations for longitudinal grading. Note that ENN can be applied to other learning tasks together with existing deep architectures, in which the responses characterize progressive representations. Comprehensive experiments on the Osteoarthritis Initiative (OAI) dataset were conducted to evaluate the proposed method. An overall accuracy was achieved as 62.7%, with the baseline, 12-month, 24-month, 36-month, and 48-month accuracy as 64.6%, 63.9%, 63.2%, 61.8% and 60.2%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YifanWang应助科研通管家采纳,获得30
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
YifanWang应助科研通管家采纳,获得30
4秒前
orixero应助科研通管家采纳,获得50
4秒前
SciGPT应助科研通管家采纳,获得30
4秒前
大傻春完成签到,获得积分10
15秒前
Rita发布了新的文献求助10
15秒前
philo发布了新的文献求助10
19秒前
今后应助超级雅霜采纳,获得10
23秒前
24秒前
超级雅霜完成签到,获得积分10
26秒前
joanna完成签到,获得积分10
28秒前
哭泣秋蝶发布了新的文献求助10
30秒前
Ze萍完成签到 ,获得积分10
30秒前
怕黑行恶完成签到,获得积分10
32秒前
35秒前
36秒前
循循完成签到,获得积分10
37秒前
超级雅霜发布了新的文献求助10
41秒前
洒脱完成签到,获得积分10
43秒前
CipherSage应助韶纹采纳,获得10
44秒前
47秒前
十一完成签到 ,获得积分10
57秒前
1分钟前
毛毛猫完成签到 ,获得积分10
1分钟前
1分钟前
强健的电源完成签到,获得积分10
1分钟前
Mottri完成签到 ,获得积分10
1分钟前
1分钟前
766465完成签到 ,获得积分10
1分钟前
小耿完成签到 ,获得积分10
1分钟前
斯文败类应助结实的虔纹采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
wbs13521完成签到,获得积分10
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
philo发布了新的文献求助10
2分钟前
JamesPei应助philo采纳,获得10
2分钟前
招水若离完成签到,获得积分10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136993
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784040
捐赠科研通 2444012
什么是DOI,文献DOI怎么找? 1299609
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989