亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhanced distance-aware self-attention and multi-level match for sentence semantic matching

判决 计算机科学 自然语言处理 人工智能 匹配(统计) 语义学(计算机科学) 语义匹配 光学(聚焦) 数学 统计 光学 物理 程序设计语言
作者
Yao Deng,Xianfeng Li,Mengyan Zhang,Xin Lu,Xia Sun
出处
期刊:Neurocomputing [Elsevier]
卷期号:501: 174-187 被引量:8
标识
DOI:10.1016/j.neucom.2022.05.103
摘要

Sentence semantic matching is a core research area in natural language processing, which is widely used in various natural language tasks. In recent years, attention mechanism has shown good performance in deep neural networks for sentence semantic matching. Most of the attention-based deep neural networks focus on sentences interaction which ignore modeling the core semantic of the sentence. In other words, they do not consider the importance of the relative distance of words when modeling the sentence semantics, which leads to deviations in modeling the core semantics of the sentence and unstable sentence interaction. Usually, people tend to associate words that are relatively close together when they read and believe that there is a deeper connection between them. Besides, the current interactive matching method after sentence modeling is relatively simple and it may be inadequate. In this paper, we build a well-performed distance-aware self-attention and multi-level matching model (DSSTM) for sentence semantic matching tasks. By considering the importance of different distance tokens, it can get the better original semantics of sentences and hold interactive matching method in multiple level after sentence modeling. To be specific, given two input sentences, we first encode them as contextual embeddings. Then, the contextual embeddings are handled by enhanced distance-aware self-attention to further strengthen the sentence semantic modeling from the whole and local aspect. At the same time, we apply the co-attention layer to extract cross-sentence interaction features while simplifying all the remaining components. Finally, we fuse them into the multi-level matching function to obtain the aggregation vector and learn divers matching representations, which is helpful to capture the diversity of sentence pairs. We conduct experiments on three sentence semantic matching tasks. Experimental results on these public datasets demonstrate that our model outperforms competitive baseline methods and our model has fewer parameters. Our source code is publicly available at https://github.com/xiaodeng-1/DSSTM.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
future完成签到 ,获得积分10
1秒前
5秒前
8秒前
9秒前
14秒前
swslgd完成签到 ,获得积分10
14秒前
等一轮明月完成签到,获得积分20
15秒前
儒雅的夏山完成签到 ,获得积分10
16秒前
19秒前
20秒前
26秒前
shaylie完成签到 ,获得积分10
29秒前
32秒前
Ayra发布了新的文献求助100
39秒前
liujingyi发布了新的文献求助10
40秒前
共享精神应助贪玩的无招采纳,获得10
45秒前
CipherSage应助Ayra采纳,获得10
46秒前
汉堡包应助liujingyi采纳,获得30
47秒前
49秒前
L_MD完成签到,获得积分10
54秒前
感性的含灵完成签到,获得积分10
1分钟前
脑洞疼应助贪玩的无招采纳,获得10
1分钟前
1分钟前
Rebeccaiscute发布了新的文献求助10
1分钟前
Jasper应助Lee采纳,获得10
1分钟前
谦让寻凝完成签到 ,获得积分0
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得20
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
洁净的千凡完成签到 ,获得积分10
2分钟前
老实的乐儿完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
Modern Relationships 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5849727
求助须知:如何正确求助?哪些是违规求助? 6251016
关于积分的说明 15624689
捐赠科研通 4966096
什么是DOI,文献DOI怎么找? 2677769
邀请新用户注册赠送积分活动 1622088
关于科研通互助平台的介绍 1578171