SubCellBarCode: integrated workflow for robust spatial proteomics by mass spectrometry

工作流程 质谱法 计算机科学 蛋白质组学 计算生物学 化学 生物 色谱法 生物化学 数据库 基因
作者
Taner Arslan,Yanbo Pan,Georgios Mermelekas,Mattias Vesterlund,Lukas M. Orre,Janne Lehtiö
出处
期刊:Nature Protocols [Nature Portfolio]
卷期号:17 (8): 1832-1867 被引量:10
标识
DOI:10.1038/s41596-022-00699-2
摘要

The molecular functions of a protein are defined by its inherent properties in relation to its environment and interaction network. Within a cell, this environment and network are defined by the subcellular location of the protein. Consequently, it is crucial to know the localization of a protein to fully understand its functions. Recently, we have developed a mass spectrometry– (MS) and bioinformatics-based pipeline to generate a proteome-wide resource for protein subcellular localization across multiple human cancer cell lines (www.subcellbarcode.org). Here, we present a detailed wet-lab protocol spanning from subcellular fractionation to MS-sample preparation and analysis. A key feature of this protocol is that it includes all generated cell fractions without discarding any material during the fractionation process. We also describe the subsequent quantitative MS-data analysis, machine learning–based classification, differential localization analysis and visualization of the output. For broad applicability, we evaluated the pipeline by using MS data generated by two different peptide pre-fractionation approaches, namely high-resolution isoelectric focusing and high-pH reverse-phase fractionation, as well as direct analysis without pre-fractionation by using long-gradient liquid chromatography-MS. Moreover, an R package covering the dry-lab part of the method was developed and made available through Bioconductor. The method is straightforward and robust, and the entire protocol, from cell harvest to classification output, can be performed within 1–2 weeks. The protocol enables accurate classification of proteins to 15 compartments and 4 neighborhoods, visualization of the output data and differential localization analysis including treatment-induced protein relocalization, condition-dependent localization or cell type–specific localization. The SubCellBarCode package is freely available at https://bioconductor.org/packages/devel/bioc/html/SubCellBarCode.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天外飞聪发布了新的文献求助10
刚刚
5秒前
nobody完成签到 ,获得积分10
5秒前
6秒前
老八完成签到,获得积分10
6秒前
化尔为鸟其名为鹏完成签到 ,获得积分10
7秒前
7秒前
Michelle发布了新的文献求助10
8秒前
千幻完成签到,获得积分10
8秒前
顺心的安珊完成签到 ,获得积分10
8秒前
科研通AI5应助清爽安南采纳,获得10
8秒前
小二郎应助老魏老魏采纳,获得10
9秒前
称心迎海发布了新的文献求助10
10秒前
AI imaging发布了新的文献求助10
14秒前
隐形曼青应助chenjie采纳,获得30
14秒前
15秒前
房孝佟完成签到 ,获得积分10
16秒前
东病房楼发布了新的文献求助10
16秒前
16秒前
16秒前
一定会更好的完成签到,获得积分10
18秒前
xiao发布了新的文献求助10
20秒前
丘比特应助lancejade采纳,获得10
21秒前
22秒前
lzy完成签到 ,获得积分10
23秒前
清爽安南发布了新的文献求助10
23秒前
鳗鱼皮带发布了新的文献求助10
23秒前
大大大大宝凌完成签到,获得积分10
26秒前
科研通AI2S应助mofarah采纳,获得10
26秒前
FST发布了新的文献求助10
27秒前
清脆的台灯完成签到,获得积分10
28秒前
舒适葶关注了科研通微信公众号
29秒前
美满的幻悲完成签到,获得积分20
29秒前
chenjie完成签到,获得积分20
29秒前
30秒前
科研通AI2S应助傅双庆采纳,获得10
31秒前
鳗鱼皮带完成签到,获得积分10
31秒前
简单的银耳汤完成签到,获得积分10
31秒前
等待的问夏完成签到 ,获得积分10
31秒前
kkkkkk发布了新的文献求助10
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740075
求助须知:如何正确求助?哪些是违规求助? 3283039
关于积分的说明 10033509
捐赠科研通 2999895
什么是DOI,文献DOI怎么找? 1646203
邀请新用户注册赠送积分活动 783409
科研通“疑难数据库(出版商)”最低求助积分说明 750374