Derailed peripheral circadian genes in polycystic ovary syndrome patients alters peripheral conversion of androgens synthesis

每1 每2 内分泌学 多囊卵巢 内科学 昼夜节律 时钟 生物 生物钟 雄激素 激素 医学 肥胖 胰岛素抵抗
作者
Betcy Susan Johnson,Meera B. Krishna,Renjini Ambika Padmanabhan,Sathy M. Pillai,K Jayakrishnan,Malini Laloraya
出处
期刊:Human Reproduction [Oxford University Press]
卷期号:37 (8): 1835-1855 被引量:34
标识
DOI:10.1093/humrep/deac139
摘要

Abstract STUDY QUESTION Do circadian genes exhibit an altered profile in peripheral blood mononuclear cells (PBMCs) of polycystic ovary syndrome (PCOS) patients and do they have a potential role in androgen excess? SUMMARY ANSWER Our findings revealed that an impaired circadian clock could hamper the regulation of peripheral steroid metabolism in PCOS women. WHAT IS KNOWN ALREADY PCOS patients exhibit features of metabolic syndrome. Circadian rhythm disruption is involved in the development of metabolic diseases and subfertility. An association between shift work and the incidence of PCOS in females was recently reported. STUDY DESIGN, SIZE, DURATION This is a retrospective case-referent study in which peripheral blood samples were obtained from 101 control and 101 PCOS subjects. PCOS diagnoses were based on Rotterdam Consensus criteria. PARTICIPANTS/MATERIALS, SETTING, METHODS This study comprised 101 women with PCOS and 101 control volunteers, as well as Swiss albino mice treated with dehydroepiandrosterone (DHEA) to induce PCOS development. Gene expression analyses of circadian and steroidogenesis genes in human PBMC and mice ovaries and blood were executed by quantitative real-time PCR. MAIN RESULTS AND THE ROLE OF CHANCE We observed aberrant expression of peripheral circadian clock genes in PCOS, with a significant reduction in the core clock genes, circadian locomotor output cycles kaput (CLOCK) (P ≤ 0.00001), brain and muscle ARNT-like 1 (BMAL1) (P ≤ 0.00001) and NPAS2 (P ≤ 0.001), and upregulation of their negative feedback loop genes, CRY1 (P ≤ 0.00003), CRY2 (P ≤ 0.00006), PER1 (P ≤ 0.003), PER2 (P ≤ 0.002), DEC1 (P ≤ 0.0001) and DEC2 (P ≤ 0.00005). Transcript levels of an additional feedback loop regulating BMAL1 showed varied expression, with reduced RORA (P ≤ 0.008) and increased NR1D1 (P ≤ 0.02) in PCOS patients in comparison with the control group. We also demonstrated the expression pattern of clock genes in PBMCs of PCOS women at three different time points. PCOS patients also exhibited increased mRNA levels of steroidogenic enzymes like StAR (P ≤ 0.0005), CYP17A1 (P ≤ 0.005), SRD5A1 (P ≤ 0.00006) and SRD5A2 (P ≤ 0.009). Knockdown of CLOCK/BMAL1 in PBMCs resulted in a significant reduction in estradiol production, by reducing CYP19A1 and a significant increase in dihydrotestosterone production, by upregulating SRD5A1 and SRD5A2 in PBMCs. Our data also showed that CYP17A1 as a direct CLOCK-BMAL1 target in PBMCs. Phenotypic classification of PCOS subgroups showed a higher variation in expression of clock genes and steroidogenesis genes with phenotype A of PCOS. In alignment with the above results, altered expression of ovarian core clock genes (Clock, Bmal1 and Per2) was found in DHEA-treated PCOS mice. The expression of peripheral blood core clock genes in DHEA-induced PCOS mice was less robust and showed a loss of periodicity in comparison with that of control mice. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION We could not evaluate the circadian oscillation of clock genes and clock-controlled genes over a 24-h period in the peripheral blood of control versus PCOS subjects. Additionally, circadian genes in the ovaries of PCOS women could not be evaluated due to limitations in sample availability, hence we employed the androgen excess mouse model of PCOS for ovarian circadian assessment. Clock genes were assessed in the whole ovary of the androgen excess mouse model of PCOS rather than in granulosa cells, which is another limitation of the present work. WIDER IMPLICATIONS OF THE FINDINGS Our observations suggest that the biological clock is one of the contributing factors in androgen excess in PCOS, owing to its potential role in modulating peripheral androgen metabolism. Considering the increasing prevalence of PCOS and the rising frequency of delayed circadian rhythms and insufficient sleep among women, our study emphasizes the potential in modulating circadian rhythm as an important strategy in PCOS management, and further research on this aspect is highly warranted. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the RGCB-DBT Core Funds and a grant (#BT/PR29996/MED/97/472/2020) from the Department of Biotechnology (DBT), India, to M.L. B.S.J. was supported by a DST/INSPIRE Fellowship/2015/IF150361 and M.B.K. was supported by the Research Fellowship from Council of Scientific & Industrial Research (CSIR) (10.2(5)/2007(ii).E.U.II). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
成绩好完成签到,获得积分10
2秒前
001完成签到 ,获得积分10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
NiL应助科研通管家采纳,获得10
3秒前
laber应助科研通管家采纳,获得50
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Hyacinth发布了新的文献求助10
3秒前
ho应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
ho应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
NiL应助科研通管家采纳,获得10
3秒前
mhlu7应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
4秒前
www完成签到 ,获得积分10
5秒前
5秒前
成绩好发布了新的文献求助10
5秒前
6秒前
wlscj应助wzx采纳,获得20
6秒前
OU发布了新的文献求助10
6秒前
小马甲应助饺子大王采纳,获得10
10秒前
10秒前
kk发布了新的文献求助10
11秒前
12秒前
矢车菊完成签到 ,获得积分10
13秒前
科研通AI2S应助积极的亦云采纳,获得10
13秒前
Sherry完成签到 ,获得积分10
15秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
20秒前
知行者发布了新的文献求助10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425244
求助须知:如何正确求助?哪些是违规求助? 4539333
关于积分的说明 14166974
捐赠科研通 4456649
什么是DOI,文献DOI怎么找? 2444274
邀请新用户注册赠送积分活动 1435255
关于科研通互助平台的介绍 1412637