Probabilistic inversion of seismic data for reservoir petrophysical characterization: Review and examples

岩石物理学 地震反演 概率逻辑 储层建模 地质学 反问题 地震模拟 反演(地质) 地球物理学 地震波 地震学 多孔性 数学 岩土工程 统计 几何学 数学分析 方位角 构造学
作者
Darío Graña,Leonardo Azevedo,Leandro de Figueiredo,Patrick Connolly,Tapan Mukerji
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:87 (5): M199-M216 被引量:37
标识
DOI:10.1190/geo2021-0776.1
摘要

The physics that describes the seismic response of an interval of saturated porous rocks with known petrophysical properties is relatively well understood and includes rock physics, petrophysics, and wave propagation models. The main goal of seismic reservoir characterization is to predict the rock and fluid properties given a set of seismic measurements by combining geophysical models and mathematical methods. This modeling challenge is generally formulated as an inverse problem. The most common geophysical inverse problem is the seismic (or elastic) inversion, i.e., the estimation of elastic properties, such as seismic velocities or impedances, from seismic amplitudes and traveltimes. The estimation of petrophysical properties, such as porosity, lithology, and fluid saturations, also can be formulated as an inverse problem and is generally referred to as rock-physics (or petrophysical) inversion. Several deterministic and probabilistic methods can be applied to solve seismic inversion problems. Deterministic algorithms predict a single solution, which is a “best” estimate or the most likely value of the model variables of interest. In probabilistic algorithms, on the other hand, the solution is the probability distribution of the model variables of interest, which can be expressed as a conditional probability density function or a set of model realizations conditioned on the data. The probabilistic approach provides a quantification of the uncertainty of the solution in addition to the most likely model. Our goal is to define the terminology, present an overview of probabilistic seismic and rock-physics inversion methods for the estimation of petrophysical properties, demonstrate the fundamental concepts with illustrative examples, and discuss the recent research developments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
勤奋的星月完成签到,获得积分10
1秒前
2秒前
DDAIDN发布了新的文献求助10
2秒前
上善若水完成签到,获得积分10
3秒前
4秒前
Prism_hua发布了新的文献求助10
4秒前
bkagyin应助破晓采纳,获得30
4秒前
7秒前
杰尼龟发布了新的文献求助10
7秒前
7秒前
元水云发布了新的文献求助10
8秒前
drtianyunhong完成签到,获得积分10
10秒前
柿饼完成签到,获得积分10
11秒前
黎夏完成签到,获得积分10
12秒前
风车发布了新的文献求助10
13秒前
啊湫超爱学习完成签到,获得积分20
13秒前
舒心思雁完成签到,获得积分10
17秒前
猫咪也疯狂应助元水云采纳,获得10
17秒前
安静严青发布了新的文献求助10
18秒前
小白调参员完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
divedown完成签到,获得积分10
20秒前
今硕真发布了新的文献求助10
20秒前
在水一方应助半芹采纳,获得10
21秒前
21秒前
21秒前
21秒前
147完成签到,获得积分10
23秒前
柴子发布了新的文献求助10
23秒前
24秒前
渊思发布了新的文献求助10
24秒前
25秒前
楚晚宁发布了新的文献求助30
25秒前
谁偷了我的sci完成签到,获得积分10
25秒前
26秒前
情怀应助安静严青采纳,获得10
26秒前
英姑应助朴素勒采纳,获得30
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150106
求助须知:如何正确求助?哪些是违规求助? 2801196
关于积分的说明 7843534
捐赠科研通 2458660
什么是DOI,文献DOI怎么找? 1308585
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721