Probabilistic inversion of seismic data for reservoir petrophysical characterization: Review and examples

岩石物理学 地震反演 概率逻辑 储层建模 地质学 反问题 地震模拟 反演(地质) 地球物理学 地震波 地震学 多孔性 数学 岩土工程 统计 几何学 数学分析 方位角 构造学
作者
Darío Graña,Leonardo Azevedo,Leandro de Figueiredo,Patrick Connolly,Tapan Mukerji
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:87 (5): M199-M216 被引量:37
标识
DOI:10.1190/geo2021-0776.1
摘要

The physics that describes the seismic response of an interval of saturated porous rocks with known petrophysical properties is relatively well understood and includes rock physics, petrophysics, and wave propagation models. The main goal of seismic reservoir characterization is to predict the rock and fluid properties given a set of seismic measurements by combining geophysical models and mathematical methods. This modeling challenge is generally formulated as an inverse problem. The most common geophysical inverse problem is the seismic (or elastic) inversion, i.e., the estimation of elastic properties, such as seismic velocities or impedances, from seismic amplitudes and traveltimes. The estimation of petrophysical properties, such as porosity, lithology, and fluid saturations, also can be formulated as an inverse problem and is generally referred to as rock-physics (or petrophysical) inversion. Several deterministic and probabilistic methods can be applied to solve seismic inversion problems. Deterministic algorithms predict a single solution, which is a “best” estimate or the most likely value of the model variables of interest. In probabilistic algorithms, on the other hand, the solution is the probability distribution of the model variables of interest, which can be expressed as a conditional probability density function or a set of model realizations conditioned on the data. The probabilistic approach provides a quantification of the uncertainty of the solution in addition to the most likely model. Our goal is to define the terminology, present an overview of probabilistic seismic and rock-physics inversion methods for the estimation of petrophysical properties, demonstrate the fundamental concepts with illustrative examples, and discuss the recent research developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助二二二采纳,获得10
1秒前
terrell完成签到,获得积分10
1秒前
David完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助Denmark采纳,获得10
2秒前
2秒前
望望旺仔牛奶完成签到,获得积分10
2秒前
香蕉觅云应助luoshi采纳,获得10
3秒前
Zn应助gnr2000采纳,获得10
3秒前
二小完成签到,获得积分20
3秒前
拼搏思卉完成签到,获得积分10
3秒前
内向音响发布了新的文献求助10
3秒前
上官若男应助曼尼采纳,获得10
4秒前
飞羽发布了新的文献求助10
4秒前
科研通AI2S应助song99采纳,获得10
4秒前
momi完成签到 ,获得积分10
4秒前
哈哈哈呢完成签到 ,获得积分20
4秒前
LiShin发布了新的文献求助10
4秒前
phylicia发布了新的文献求助10
5秒前
萝卜完成签到,获得积分10
5秒前
5秒前
sjj完成签到,获得积分10
6秒前
只道寻常发布了新的文献求助10
6秒前
灵巧坤完成签到,获得积分20
7秒前
澹台灭明完成签到,获得积分10
7秒前
含蓄的鹤发布了新的文献求助10
7秒前
K. G.完成签到,获得积分0
7秒前
张云雷的大闸蟹完成签到,获得积分20
7秒前
7秒前
8秒前
9秒前
化学狗完成签到,获得积分10
9秒前
yud完成签到 ,获得积分10
9秒前
10秒前
拼搏思卉发布了新的文献求助10
10秒前
11秒前
雨碎寒江完成签到,获得积分10
11秒前
12秒前
会飞的木头完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762