Multisource cross-domain fault diagnosis of rolling bearing based on subdomain adaptation network

计算机科学 学习迁移 提取器 分类器(UML) 残余物 域适应 数据挖掘 断层(地质) 方位(导航) 人工智能 领域(数学分析) 机器学习 模式识别(心理学) 算法 工程类 数学 数学分析 地震学 地质学 工艺工程
作者
Zhichao Wang,Wentao Huang,Yi Chen,Yunchuan Jiang,Gaoliang Peng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (10): 105109-105109 被引量:9
标识
DOI:10.1088/1361-6501/ac7941
摘要

Abstract The excellent performance of current intelligent fault diagnosis methods based on deep learning is attributed to the availability of large amounts of labeled data. However, in practical bearing fault diagnosis, the high cost of large sample data and changes in operating conditions lead to the scarcity of available training data, which limits the engineering application of intelligent bearing fault diagnosis. To solve this problem, this paper proposes a cross-domain fault diagnosis method based on multisource subdomain adaptation networks (MSDAN). First, the data from multiple source domains are simultaneously input to a shared feature extractor composed of a one-dimensional residual network. Then, the private feature extractor is used to learn features from different source domains and reduce the domain shifts of each source and target domain using the local maximum mean discrepancy. Finally, the different classifier outputs of the target domain samples are aligned. The highlight of MSDAN is to obtain diagnostic knowledge from multiple source domains and further divide the subdomains using the categories as criteria, which not only aligns the global distribution of the source and target domain but also performs a more refined subdomain alignment. The method effectively alleviates the negative transfer phenomenon caused by insufficient domain alignment in multisource transfer diagnosis. The effectiveness and superiority of the proposed MSDAN method are verified by constructing seven multisource transfer tasks with two bearing fault diagnosis cases, including cross-operating-condition and cross-machine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿辉发布了新的文献求助10
2秒前
lsybf完成签到,获得积分10
2秒前
2秒前
Meng完成签到,获得积分10
2秒前
3秒前
Owen应助bgerivers采纳,获得10
4秒前
Adzuki0812发布了新的文献求助10
4秒前
pluto应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
多云发布了新的文献求助10
6秒前
6秒前
情怀应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得30
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
周周发布了新的文献求助30
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得30
7秒前
wanci应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
俊俊完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
机灵的大白菜完成签到 ,获得积分10
8秒前
XinyuLu完成签到,获得积分10
8秒前
8秒前
9秒前
李健的小迷弟应助ster223采纳,获得10
10秒前
lym97完成签到 ,获得积分10
11秒前
高贵乌冬面完成签到 ,获得积分10
12秒前
14秒前
14秒前
鹊起完成签到 ,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271518
求助须知:如何正确求助?哪些是违规求助? 4429192
关于积分的说明 13787815
捐赠科研通 4307460
什么是DOI,文献DOI怎么找? 2363567
邀请新用户注册赠送积分活动 1359231
关于科研通互助平台的介绍 1322167