Multisource cross-domain fault diagnosis of rolling bearing based on subdomain adaptation network

计算机科学 学习迁移 提取器 分类器(UML) 残余物 域适应 数据挖掘 断层(地质) 方位(导航) 人工智能 领域(数学分析) 机器学习 模式识别(心理学) 算法 工程类 数学 数学分析 地震学 地质学 工艺工程
作者
Zhichao Wang,Wentao Huang,Yi Chen,Yunchuan Jiang,Gaoliang Peng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (10): 105109-105109 被引量:9
标识
DOI:10.1088/1361-6501/ac7941
摘要

Abstract The excellent performance of current intelligent fault diagnosis methods based on deep learning is attributed to the availability of large amounts of labeled data. However, in practical bearing fault diagnosis, the high cost of large sample data and changes in operating conditions lead to the scarcity of available training data, which limits the engineering application of intelligent bearing fault diagnosis. To solve this problem, this paper proposes a cross-domain fault diagnosis method based on multisource subdomain adaptation networks (MSDAN). First, the data from multiple source domains are simultaneously input to a shared feature extractor composed of a one-dimensional residual network. Then, the private feature extractor is used to learn features from different source domains and reduce the domain shifts of each source and target domain using the local maximum mean discrepancy. Finally, the different classifier outputs of the target domain samples are aligned. The highlight of MSDAN is to obtain diagnostic knowledge from multiple source domains and further divide the subdomains using the categories as criteria, which not only aligns the global distribution of the source and target domain but also performs a more refined subdomain alignment. The method effectively alleviates the negative transfer phenomenon caused by insufficient domain alignment in multisource transfer diagnosis. The effectiveness and superiority of the proposed MSDAN method are verified by constructing seven multisource transfer tasks with two bearing fault diagnosis cases, including cross-operating-condition and cross-machine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wzq发布了新的文献求助30
3秒前
3秒前
吴凡完成签到,获得积分10
5秒前
Fox完成签到,获得积分10
5秒前
科研通AI5应助研究僧-卓采纳,获得10
6秒前
肉肉肉发布了新的文献求助10
8秒前
烂漫映之完成签到 ,获得积分10
9秒前
嘟嘟完成签到 ,获得积分10
10秒前
小女完成签到,获得积分10
12秒前
12秒前
林白生完成签到 ,获得积分10
13秒前
汉堡包应助Luo采纳,获得10
15秒前
16秒前
研究僧-卓发布了新的文献求助10
21秒前
星辰大海应助眼睛大墨镜采纳,获得10
23秒前
24秒前
Orange应助suchui采纳,获得10
24秒前
没有密码关注了科研通微信公众号
27秒前
JamesPei应助zhuge采纳,获得10
27秒前
肉肉肉完成签到,获得积分10
27秒前
27秒前
dsfsd完成签到,获得积分10
28秒前
29秒前
30秒前
涵涵涵hh发布了新的文献求助10
30秒前
31秒前
34秒前
36秒前
lvlvlvsh发布了新的文献求助10
38秒前
38秒前
LL完成签到,获得积分10
39秒前
42秒前
Huang完成签到,获得积分10
42秒前
suchui发布了新的文献求助10
43秒前
Dean举报Komorebi求助涉嫌违规
43秒前
今后应助小可爱采纳,获得10
43秒前
jeep先生完成签到,获得积分10
44秒前
没有密码发布了新的文献求助10
44秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4545514
求助须知:如何正确求助?哪些是违规求助? 3977133
关于积分的说明 12315793
捐赠科研通 3645296
什么是DOI,文献DOI怎么找? 2007495
邀请新用户注册赠送积分活动 1043068
科研通“疑难数据库(出版商)”最低求助积分说明 931929