Intrusion detection system based on hybridizing a modified binary grey wolf optimization and particle swarm optimization

计算机科学 粒子群优化 入侵检测系统 元启发式 多群优化 二进制数 入侵 数学优化 人工智能 算法 数学 地质学 地球化学 算术
作者
Qusay M. Alzubi,Mohammed Anbar,Yousef Sanjalawe,Mohammed Azmi Al‐Betar,Rosni Abdullah
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:204: 117597-117597 被引量:43
标识
DOI:10.1016/j.eswa.2022.117597
摘要

Nowadays, the world is increasingly becoming more connected and dependent on the Internet and Internet-based services. One of the main challenges of interconnectedness is the security of applications and networks from malicious actors. The security challenge is further compounded by the exponential growth of threats and the increase in attack vectors through interfaces of many newly introduced network services. To deal with the security threats, many solutions have been proposed; yet the existing solutions overwhelmingly fail to detect security threats efficiently with high performance. Accordingly, a hybridization of modified binary Grey Wolf Optimization and Particle Swarm Optimization is proposed in this article. The proposed solution uses two benchmarking datasets, NSL KDD’99 and UNSW-NB15, and the results reveal that the proposed solution outperforms the existing solutions, as the proposed approach improves the detection accuracy by approximately 0.3% to 12%, and the detection rate by 2% to 12%. In addition, it reduces false alarm rates by 4% to 43%, and reduces the number of features by approximately 31% to 75%. Last, the proposed approach reduces processing time by approximately 14% to 22% compared to state-of-that-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LY0430完成签到,获得积分10
1秒前
隐形曼青应助i说晚安采纳,获得10
2秒前
3秒前
胖丁完成签到,获得积分10
4秒前
钰姝完成签到,获得积分10
4秒前
4秒前
Lucas应助夜雨采纳,获得10
5秒前
hh77发布了新的文献求助10
6秒前
6秒前
6秒前
youy完成签到 ,获得积分10
8秒前
舒适的映安完成签到,获得积分10
8秒前
MZT完成签到,获得积分10
8秒前
ornot君君发布了新的文献求助10
9秒前
Ava应助成就的幼南采纳,获得10
9秒前
10秒前
NexusExplorer应助刘亚赛采纳,获得10
11秒前
ruochenzu发布了新的文献求助10
12秒前
faye发布了新的文献求助10
12秒前
13秒前
栓牛哥完成签到,获得积分10
15秒前
16秒前
彭于晏应助ornot君君采纳,获得10
17秒前
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
Rondab应助科研通管家采纳,获得10
19秒前
Rondab应助科研通管家采纳,获得10
19秒前
木头人应助科研通管家采纳,获得10
19秒前
核桃应助科研通管家采纳,获得50
19秒前
20秒前
熊猫完成签到,获得积分0
20秒前
慕青应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
orixero应助枯槁赴渊采纳,获得10
20秒前
逸之狐应助科研通管家采纳,获得20
20秒前
yznfly应助科研通管家采纳,获得30
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
Orange应助科研通管家采纳,获得10
20秒前
彭于晏应助科研通管家采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959110
求助须知:如何正确求助?哪些是违规求助? 3505445
关于积分的说明 11123768
捐赠科研通 3237126
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821