Intrusion detection system based on hybridizing a modified binary grey wolf optimization and particle swarm optimization

计算机科学 粒子群优化 入侵检测系统 元启发式 多群优化 二进制数 入侵 数学优化 人工智能 算法 数学 地质学 地球化学 算术
作者
Qusay M. Alzubi,Mohammed Anbar,Yousef Sanjalawe,Mohammed Azmi Al‐Betar,Rosni Abdullah
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:204: 117597-117597 被引量:43
标识
DOI:10.1016/j.eswa.2022.117597
摘要

Nowadays, the world is increasingly becoming more connected and dependent on the Internet and Internet-based services. One of the main challenges of interconnectedness is the security of applications and networks from malicious actors. The security challenge is further compounded by the exponential growth of threats and the increase in attack vectors through interfaces of many newly introduced network services. To deal with the security threats, many solutions have been proposed; yet the existing solutions overwhelmingly fail to detect security threats efficiently with high performance. Accordingly, a hybridization of modified binary Grey Wolf Optimization and Particle Swarm Optimization is proposed in this article. The proposed solution uses two benchmarking datasets, NSL KDD’99 and UNSW-NB15, and the results reveal that the proposed solution outperforms the existing solutions, as the proposed approach improves the detection accuracy by approximately 0.3% to 12%, and the detection rate by 2% to 12%. In addition, it reduces false alarm rates by 4% to 43%, and reduces the number of features by approximately 31% to 75%. Last, the proposed approach reduces processing time by approximately 14% to 22% compared to state-of-that-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
baiyuecheng发布了新的文献求助10
刚刚
华仔应助QUN采纳,获得10
1秒前
笑点低的梦槐完成签到 ,获得积分10
1秒前
1秒前
王王赵完成签到,获得积分10
1秒前
希望天下0贩的0应助时安采纳,获得10
2秒前
第3行星完成签到 ,获得积分10
2秒前
2秒前
明理的孤容完成签到,获得积分10
2秒前
4秒前
4秒前
Retromer完成签到,获得积分10
4秒前
Mumu发布了新的文献求助10
4秒前
完美的从菡完成签到,获得积分10
5秒前
5秒前
嘻嘻嘻112完成签到,获得积分10
5秒前
今后应助aaa采纳,获得30
6秒前
科研通AI6应助茂茂采纳,获得10
6秒前
SciGPT应助yinghan采纳,获得10
7秒前
orixero应助人形过柱机采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
YIXIN发布了新的文献求助10
8秒前
qq完成签到,获得积分10
8秒前
9秒前
10秒前
yangl完成签到 ,获得积分10
10秒前
11秒前
CR7应助CYH采纳,获得20
11秒前
喵先生完成签到,获得积分10
11秒前
研友_ngqRV8发布了新的文献求助10
11秒前
11秒前
11秒前
安可瓶子发布了新的文献求助10
11秒前
大模型应助散热采纳,获得10
12秒前
12秒前
灼灼发布了新的文献求助20
12秒前
CWC完成签到,获得积分10
13秒前
慕青应助杨洋采纳,获得10
14秒前
Cu完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531667
求助须知:如何正确求助?哪些是违规求助? 4620468
关于积分的说明 14573518
捐赠科研通 4560191
什么是DOI,文献DOI怎么找? 2498759
邀请新用户注册赠送积分活动 1478669
关于科研通互助平台的介绍 1450015