A Transfer Learning‐Based Method for Facilitating the Prediction of Unsteady Crystal Growth

学习迁移 计算机科学 过程(计算) 人工智能 范围(计算机科学) 传输(计算) 机器学习 并行计算 操作系统 程序设计语言
作者
Yifan Dang,Kentaro Kutsukake,Xin Liu,Yoshiki Inoue,Xinbo Liu,Shota Seki,Can Zhu,Shunta Harada,Miho Tagawa,Toru Ujihara
出处
期刊:Advanced theory and simulations [Wiley]
卷期号:5 (9) 被引量:3
标识
DOI:10.1002/adts.202200204
摘要

Abstract Real‐time prediction and dynamic control systems that can adapt to an unsteady environment are necessary for material fabrication processes, especially crystal growth. Recent studies have demonstrated the effectiveness of machine learning in predicting an unsteady crystal growth process, but its wider application is hindered by the large amount of training data required for sufficient accuracy. To address this problem, this study investigates the capability of transfer learning to predict geometric evolution in an unsteady silicon carbide (SiC) solution growth system based on a small amount of data. The performance of transferred models is discussed regarding the effect of the transfer learning method, training data amount, and time step length. The transfer learning strategy yields the same accuracy as that of training from scratch but requires only 20% of the training data. The accuracy is stably inherited through successive time steps, which demonstrates the effectiveness of transfer learning in reducing the required amount of training data for predicting evolution in an unsteady crystal growth process. Moreover, the transferred models trained with relatively more data (no more than 100%) further improve the accuracy inherited from the source model through multiple time steps, which broadens the application scope of transfer learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MJ完成签到,获得积分10
刚刚
1秒前
下次见发布了新的文献求助10
1秒前
1秒前
Yyy发布了新的文献求助10
1秒前
半圆亻发布了新的文献求助10
2秒前
爆米花应助liyiliyi117采纳,获得10
2秒前
heure发布了新的文献求助10
3秒前
苏洋完成签到,获得积分20
3秒前
dovis发布了新的文献求助10
3秒前
4秒前
充电宝应助墨墨叻采纳,获得10
4秒前
LL发布了新的文献求助30
5秒前
echo发布了新的文献求助10
5秒前
5秒前
滕擎发布了新的文献求助10
5秒前
accpeted发布了新的文献求助10
5秒前
li完成签到,获得积分10
5秒前
萧水白应助隐形以晴采纳,获得10
6秒前
半圆亻完成签到,获得积分10
6秒前
Xxxxr完成签到,获得积分10
6秒前
苏洋发布了新的文献求助10
6秒前
7秒前
王玉完成签到,获得积分10
7秒前
FashionBoy应助刘二狗采纳,获得10
8秒前
海关监管环境完成签到,获得积分10
9秒前
kopp完成签到,获得积分10
10秒前
Bubble发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
下次见完成签到,获得积分10
12秒前
12秒前
派派完成签到,获得积分10
13秒前
饼饼完成签到,获得积分10
14秒前
14秒前
16秒前
16秒前
sunny30发布了新的文献求助10
16秒前
shtatbf应助Santiago采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951800
求助须知:如何正确求助?哪些是违规求助? 3497233
关于积分的说明 11086336
捐赠科研通 3227767
什么是DOI,文献DOI怎么找? 1784520
邀请新用户注册赠送积分活动 868692
科研通“疑难数据库(出版商)”最低求助积分说明 801163