A Transfer Learning‐Based Method for Facilitating the Prediction of Unsteady Crystal Growth

学习迁移 计算机科学 过程(计算) 人工智能 范围(计算机科学) 传输(计算) 机器学习 并行计算 操作系统 程序设计语言
作者
Yifan Dang,Kentaro Kutsukake,Xin Liu,Yoshiki Inoue,Xinbo Liu,Syûzô Seki,Chen Zhu,Shunta Harada,Miho Tagawa,Toru Ujihara
出处
期刊:Advanced theory and simulations [Wiley]
卷期号:5 (9)
标识
DOI:10.1002/adts.202200204
摘要

Abstract Real‐time prediction and dynamic control systems that can adapt to an unsteady environment are necessary for material fabrication processes, especially crystal growth. Recent studies have demonstrated the effectiveness of machine learning in predicting an unsteady crystal growth process, but its wider application is hindered by the large amount of training data required for sufficient accuracy. To address this problem, this study investigates the capability of transfer learning to predict geometric evolution in an unsteady silicon carbide (SiC) solution growth system based on a small amount of data. The performance of transferred models is discussed regarding the effect of the transfer learning method, training data amount, and time step length. The transfer learning strategy yields the same accuracy as that of training from scratch but requires only 20% of the training data. The accuracy is stably inherited through successive time steps, which demonstrates the effectiveness of transfer learning in reducing the required amount of training data for predicting evolution in an unsteady crystal growth process. Moreover, the transferred models trained with relatively more data (no more than 100%) further improve the accuracy inherited from the source model through multiple time steps, which broadens the application scope of transfer learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pig120完成签到 ,获得积分10
刚刚
幸福冬云应助yao采纳,获得30
刚刚
penguin发布了新的文献求助10
刚刚
高兴的半仙完成签到,获得积分10
1秒前
机智的凡梦完成签到,获得积分10
1秒前
2秒前
zzx完成签到,获得积分10
2秒前
摆烂的鲲完成签到,获得积分10
2秒前
ztll完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
dentistjh完成签到,获得积分10
3秒前
南在南方完成签到,获得积分10
4秒前
posh完成签到 ,获得积分10
4秒前
4秒前
爱笑的莫茗完成签到,获得积分10
6秒前
Revision完成签到,获得积分10
6秒前
lishuai完成签到,获得积分10
7秒前
空城sniper完成签到,获得积分20
7秒前
7秒前
DW发布了新的文献求助10
8秒前
阿迪发布了新的文献求助10
8秒前
扶恩完成签到,获得积分10
8秒前
8秒前
8秒前
青尘枫叶发布了新的文献求助10
8秒前
xiaji完成签到,获得积分10
8秒前
煎饼果子不加葱完成签到,获得积分10
8秒前
华仔应助谢谢采纳,获得10
9秒前
科研小白完成签到 ,获得积分10
9秒前
虚幻初之完成签到,获得积分10
9秒前
霜序初四完成签到 ,获得积分10
10秒前
绍兴李达康完成签到,获得积分10
10秒前
不负发布了新的文献求助20
10秒前
ubw完成签到,获得积分10
10秒前
NexusExplorer应助ahmin采纳,获得10
11秒前
123完成签到,获得积分10
11秒前
一条热带鱼完成签到,获得积分10
12秒前
Odingers应助科研通管家采纳,获得10
12秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068596
求助须知:如何正确求助?哪些是违规求助? 2722493
关于积分的说明 7477698
捐赠科研通 2369542
什么是DOI,文献DOI怎么找? 1256421
科研通“疑难数据库(出版商)”最低求助积分说明 609576
版权声明 596835