Use of Nomogram on Nutritional Assessment Indicators to Predict Clinical Outcomes in Patients Undergoing Surgical Resection for High-Grade Osteosarcoma

列线图 医学 多元分析 体质指数 单变量 单变量分析 多元统计 内科学 外科 数学 统计
作者
Yuhan Yang,Chen Zhou,Xuelei Ma
出处
期刊:Nutrition and Cancer [Informa]
卷期号:74 (10): 3564-3573
标识
DOI:10.1080/01635581.2022.2081342
摘要

Background: To evaluate the prognostic values of nutrition-associated indicators and develop nutritional models for prediction of different clinical outcomes in patients with high-grade osteosarcoma receiving surgical resection.Methods: Patients diagnosed as high-grade osteosarcomas were included between 2008 and 2018. Body mass index (BMI), Glasgow prognostic score (GPS), systematic inflammatory index (SII), and controlling nutritional score (CONUT) were calculated as nutrition-associated indicators. The primary outcome was overall survival (OS) as the long-term outcome, and the secondary outcome was the postoperative hospitalization duration as the short-term outcome. The prognostic values of nutrition-associated indicators were evaluated by univariate and multivariate analyses to recognize the potential predictors for construction of nomogram model with validation.Results: High GPS and CONUT yielded poor OS independently [GPS: HR (95% CI): 3.262 (2.035-5.229), p < 0.001; CONUT: HR (95% CI): 2.445 (1.508-3.964), p < 0.001]. The nomogram model for OS showed great prediction abilities and moderate calibration performance after integrating GPS and CONUT. CONUT was also identified as the independent predictor for hospitalization duration [OR (95% CI): 1.950 (1.145-3.321), p = 0.014].Conclusions: The CONUT score was considered as the significant predictor in prediction of OS and hospitalization duration. Appropriate management for nutritional status might optimize patients' prognoses with reference to nutrition-associated indicators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助李平采纳,获得10
1秒前
上官若男应助hyt采纳,获得10
1秒前
1秒前
调皮的晓凡完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
踏实的语山完成签到 ,获得积分10
2秒前
英吉利25发布了新的文献求助10
2秒前
大模型应助科研锐采纳,获得10
2秒前
飘逸太英发布了新的文献求助10
3秒前
3秒前
Oscillator发布了新的文献求助10
4秒前
4秒前
Criminology34应助陈小明采纳,获得10
4秒前
草帽完成签到,获得积分10
5秒前
安琪发布了新的文献求助10
5秒前
负责玉米发布了新的文献求助30
6秒前
ronll发布了新的文献求助10
7秒前
七里海完成签到,获得积分10
8秒前
科研通AI6应助安妮采纳,获得10
8秒前
芝士椰果发布了新的文献求助10
8秒前
记得笑发布了新的文献求助10
9秒前
帅帅完成签到,获得积分10
9秒前
甜蜜的大象完成签到 ,获得积分10
9秒前
风清扬发布了新的文献求助10
9秒前
9秒前
10秒前
顺利秋灵完成签到,获得积分20
11秒前
11秒前
LZS完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
科研锐发布了新的文献求助10
14秒前
zws发布了新的文献求助10
15秒前
张艺馨完成签到,获得积分10
15秒前
飘逸太英完成签到,获得积分20
15秒前
15秒前
小鲨鱼完成签到,获得积分20
16秒前
善学以致用应助记得笑采纳,获得10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277