微生物群
非生物胁迫
生物
适应(眼睛)
农业
弹性(材料科学)
干旱胁迫
生物技术
粮食安全
非生物成分
心理弹性
环境资源管理
生态学
环境科学
农学
生物信息学
心理学
热力学
基因
生物化学
物理
神经科学
心理治疗师
作者
Sajad Ali,Anshika Tyagi,Suvin Park,Rakeeb Ahmad Mir,Muntazir Mushtaq,Basharat Ahmad Bhat,Henda Mahmoudi,Hanhong Bae
标识
DOI:10.1016/j.envexpbot.2022.104933
摘要
Plants being sessile are constantly challenged by numerous abiotic stressors that jeopardize their survival. Drought stress is a major constraint in sustainable agriculture that affects plant distribution, growth, and productivity. Plants use multidimensional adaptation tactics at cellular, molecular, and biochemical levels to combat drought stress. These adaptive strategies have been extensively studied, and a variety of drought-resistance genes have recently been discovered. However, translating this information from the laboratory to field conditions is still a major challenge. Hence, developing novel long-term and successful drought mitigation strategies is an important aim in agriculture, as it is critical to ensure food security. One such approach is to explore the plant microbiome, which has recently become a research frontier. Plant microbiome engineering is being examined as a new aspect of sustainable agriculture, with the potential to improve crop resilience to drought. Plants restructure their microbiome against drought stress by employing the “cry for help” strategy, which can both alleviate stress and can improve health and nutrition availability. Mechanistic insights into the complex feedback between microbes and plants during and after water stress are required to fully harness the potential of above- and below-ground microbiome. The use of high-throughput tools to investigate the ecological, biochemical, physiological, and molecular aspects of the plant microbiome under drought stress will improve our ability to improve the drought resilience of crops in the future. This review highlights recent findings on the impact of drought and related signaling in plants. We also discuss the function of the plant microbiome in drought resistance in plants, as well as possible future research directions. Furthermore, we discuss the roles of multiomics, synthetic microbial communities (SynComs,) and host-mediated microbiome engineering for developing drought-resilient microbial communities in sustainable agriculture. Finally, we assess the challenges encountered and make recommendations for future endeavors to extend plant microbiome applications from the lab to the field.
科研通智能强力驱动
Strongly Powered by AbleSci AI