清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comprehensive Evaluation of Machine Learning Models and Gene Expression Signatures for Prostate Cancer Prognosis Using Large Population Cohorts.

前列腺癌 比例危险模型 医学 肿瘤科 机器学习 人口 计算机科学 人工智能 数据挖掘 生物信息学 内科学
作者
Ruidong Li,Jianguo Zhu,Wei-De Zhong,Zhenyu Jia
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (9): 1832-1843
标识
DOI:10.1158/0008-5472.can-21-3074
摘要

Overtreatment remains a pervasive problem in prostate cancer management due to the highly variable and often indolent course of disease. Molecular signatures derived from gene expression profiling have played critical roles in guiding prostate cancer treatment decisions. Many gene expression signatures have been developed to improve the risk stratification of prostate cancer and some of them have already been applied to clinical practice. However, no comprehensive evaluation has been performed to compare the performance of these signatures. In this study, we conducted a systematic and unbiased evaluation of 15 machine learning (ML) algorithms and 30 published prostate cancer gene expression-based prognostic signatures leveraging 10 transcriptomics datasets with 1,558 primary patients with prostate cancer from public data repositories. This analysis revealed that survival analysis models outperformed binary classification models for risk assessment, and the performance of the survival analysis methods-Cox model regularized with ridge penalty (Cox-Ridge) and partial least squares (PLS) regression for Cox model (Cox-PLS)-were generally more robust than the other methods. Based on the Cox-Ridge algorithm, several top prognostic signatures displayed comparable or even better performance than commercial panels. These findings will facilitate the identification of existing prognostic signatures that are promising for further validation in prospective studies and promote the development of robust prognostic models to guide clinical decision-making. Moreover, this study provides a valuable data resource from large primary prostate cancer cohorts, which can be used to develop, validate, and evaluate novel statistical methodologies and molecular signatures to improve prostate cancer management.This systematic evaluation of 15 machine learning algorithms and 30 published gene expression signatures for the prognosis of prostate cancer will assist clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
悦悦发布了新的文献求助10
7秒前
LPPQBB应助冷静新烟采纳,获得30
24秒前
浮游应助半喇柯基采纳,获得10
26秒前
秋天完成签到,获得积分10
29秒前
29秒前
zhuosht完成签到 ,获得积分10
30秒前
34秒前
苒苒完成签到,获得积分10
1分钟前
乐观海云完成签到 ,获得积分10
1分钟前
1分钟前
ACCEPT完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
111完成签到,获得积分10
2分钟前
polly完成签到,获得积分10
3分钟前
3分钟前
ZXY完成签到 ,获得积分10
3分钟前
polly发布了新的文献求助10
3分钟前
3分钟前
111发布了新的文献求助10
3分钟前
3分钟前
qin202569完成签到,获得积分10
4分钟前
孟寐以求完成签到 ,获得积分10
4分钟前
淡淡菠萝完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
欢呼亦绿完成签到,获得积分10
5分钟前
5分钟前
小孙失策了完成签到 ,获得积分10
6分钟前
6分钟前
宇文雨文完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
LPPQBB应助科研通管家采纳,获得80
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5303286
求助须知:如何正确求助?哪些是违规求助? 4450158
关于积分的说明 13849104
捐赠科研通 4336792
什么是DOI,文献DOI怎么找? 2381094
邀请新用户注册赠送积分活动 1376083
关于科研通互助平台的介绍 1342675