Comprehensive Evaluation of Machine Learning Models and Gene Expression Signatures for Prostate Cancer Prognosis Using Large Population Cohorts.

前列腺癌 比例危险模型 医学 肿瘤科 机器学习 人口 计算机科学 人工智能 数据挖掘 生物信息学 内科学
作者
Ruidong Li,Jianguo Zhu,Wei-De Zhong,Zhenyu Jia
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (9): 1832-1843
标识
DOI:10.1158/0008-5472.can-21-3074
摘要

Overtreatment remains a pervasive problem in prostate cancer management due to the highly variable and often indolent course of disease. Molecular signatures derived from gene expression profiling have played critical roles in guiding prostate cancer treatment decisions. Many gene expression signatures have been developed to improve the risk stratification of prostate cancer and some of them have already been applied to clinical practice. However, no comprehensive evaluation has been performed to compare the performance of these signatures. In this study, we conducted a systematic and unbiased evaluation of 15 machine learning (ML) algorithms and 30 published prostate cancer gene expression-based prognostic signatures leveraging 10 transcriptomics datasets with 1,558 primary patients with prostate cancer from public data repositories. This analysis revealed that survival analysis models outperformed binary classification models for risk assessment, and the performance of the survival analysis methods-Cox model regularized with ridge penalty (Cox-Ridge) and partial least squares (PLS) regression for Cox model (Cox-PLS)-were generally more robust than the other methods. Based on the Cox-Ridge algorithm, several top prognostic signatures displayed comparable or even better performance than commercial panels. These findings will facilitate the identification of existing prognostic signatures that are promising for further validation in prospective studies and promote the development of robust prognostic models to guide clinical decision-making. Moreover, this study provides a valuable data resource from large primary prostate cancer cohorts, which can be used to develop, validate, and evaluate novel statistical methodologies and molecular signatures to improve prostate cancer management.This systematic evaluation of 15 machine learning algorithms and 30 published gene expression signatures for the prognosis of prostate cancer will assist clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jackone完成签到 ,获得积分10
2秒前
kelien1205完成签到 ,获得积分10
7秒前
糟糕的翅膀完成签到,获得积分10
10秒前
11秒前
槑槑完成签到 ,获得积分10
13秒前
13秒前
稳重母鸡完成签到 ,获得积分10
14秒前
chyang完成签到,获得积分10
14秒前
优雅的平安完成签到 ,获得积分10
15秒前
Hello应助科研通管家采纳,获得10
16秒前
乐观无心应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
xz发布了新的文献求助10
17秒前
乐观无心应助科研通管家采纳,获得150
17秒前
黄汉良完成签到,获得积分10
17秒前
chyang发布了新的文献求助10
18秒前
猪猪hero发布了新的文献求助10
20秒前
草字头完成签到,获得积分10
23秒前
白嫖论文完成签到 ,获得积分10
27秒前
30秒前
muzi完成签到,获得积分10
31秒前
哥哥完成签到,获得积分10
32秒前
元明清发布了新的文献求助10
35秒前
qianci2009完成签到,获得积分10
37秒前
尼古拉耶维奇完成签到 ,获得积分10
38秒前
斯文败类应助哥哥采纳,获得10
39秒前
Skyllne完成签到 ,获得积分10
40秒前
Jeffery426完成签到,获得积分10
43秒前
爱我不上火完成签到 ,获得积分10
49秒前
2025顺顺利利完成签到 ,获得积分10
51秒前
Easonluo8完成签到,获得积分10
52秒前
DianaLee完成签到 ,获得积分10
53秒前
丰富咖啡完成签到,获得积分10
54秒前
结实凌瑶完成签到 ,获得积分10
56秒前
害怕的听筠完成签到,获得积分10
59秒前
SSDlk完成签到,获得积分10
1分钟前
LY完成签到,获得积分10
1分钟前
我本人lrx完成签到 ,获得积分10
1分钟前
呆萌的蚂蚁完成签到 ,获得积分10
1分钟前
王朝阳完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188071
求助须知:如何正确求助?哪些是违规求助? 4372504
关于积分的说明 13613427
捐赠科研通 4225688
什么是DOI,文献DOI怎么找? 2317866
邀请新用户注册赠送积分活动 1316437
关于科研通互助平台的介绍 1266095