Comprehensive Evaluation of Machine Learning Models and Gene Expression Signatures for Prostate Cancer Prognosis Using Large Population Cohorts.

前列腺癌 比例危险模型 医学 肿瘤科 机器学习 人口 计算机科学 人工智能 数据挖掘 生物信息学 内科学
作者
Ruidong Li,Jianguo Zhu,Wei-De Zhong,Zhenyu Jia
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (9): 1832-1843
标识
DOI:10.1158/0008-5472.can-21-3074
摘要

Overtreatment remains a pervasive problem in prostate cancer management due to the highly variable and often indolent course of disease. Molecular signatures derived from gene expression profiling have played critical roles in guiding prostate cancer treatment decisions. Many gene expression signatures have been developed to improve the risk stratification of prostate cancer and some of them have already been applied to clinical practice. However, no comprehensive evaluation has been performed to compare the performance of these signatures. In this study, we conducted a systematic and unbiased evaluation of 15 machine learning (ML) algorithms and 30 published prostate cancer gene expression-based prognostic signatures leveraging 10 transcriptomics datasets with 1,558 primary patients with prostate cancer from public data repositories. This analysis revealed that survival analysis models outperformed binary classification models for risk assessment, and the performance of the survival analysis methods-Cox model regularized with ridge penalty (Cox-Ridge) and partial least squares (PLS) regression for Cox model (Cox-PLS)-were generally more robust than the other methods. Based on the Cox-Ridge algorithm, several top prognostic signatures displayed comparable or even better performance than commercial panels. These findings will facilitate the identification of existing prognostic signatures that are promising for further validation in prospective studies and promote the development of robust prognostic models to guide clinical decision-making. Moreover, this study provides a valuable data resource from large primary prostate cancer cohorts, which can be used to develop, validate, and evaluate novel statistical methodologies and molecular signatures to improve prostate cancer management.This systematic evaluation of 15 machine learning algorithms and 30 published gene expression signatures for the prognosis of prostate cancer will assist clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝涩完成签到,获得积分10
刚刚
善学以致用应助Dskelf采纳,获得10
刚刚
刚刚
纯真大侠完成签到,获得积分10
1秒前
sora98完成签到 ,获得积分10
1秒前
Jasper应助Tiffiany采纳,获得10
1秒前
失眠的世开完成签到,获得积分10
1秒前
NexusExplorer应助醉熏的似狮采纳,获得10
1秒前
2秒前
2秒前
西科Jeremy完成签到,获得积分10
2秒前
lylyzhl发布了新的文献求助10
2秒前
orang完成签到,获得积分10
2秒前
小二郎应助火星上涫采纳,获得10
3秒前
李健应助BLock采纳,获得10
3秒前
十年完成签到 ,获得积分10
3秒前
大叉烧完成签到,获得积分10
3秒前
Wonder发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
lyl完成签到,获得积分10
4秒前
4秒前
ww发布了新的文献求助10
5秒前
慕青应助MF采纳,获得10
5秒前
李子潭应助柚子采纳,获得20
5秒前
现代的可乐关注了科研通微信公众号
5秒前
coco完成签到,获得积分10
5秒前
烟花应助happiness采纳,获得10
6秒前
龙海完成签到 ,获得积分10
6秒前
坚强白凝发布了新的文献求助10
6秒前
7秒前
zhaozhao完成签到,获得积分20
7秒前
Wendy发布了新的文献求助10
7秒前
7秒前
Ava应助超级的千青采纳,获得10
7秒前
wwjj发布了新的文献求助10
7秒前
jasonhuang完成签到,获得积分10
8秒前
8秒前
DZQ发布了新的文献求助10
8秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337972
求助须知:如何正确求助?哪些是违规求助? 4475164
关于积分的说明 13927295
捐赠科研通 4370189
什么是DOI,文献DOI怎么找? 2401255
邀请新用户注册赠送积分活动 1394279
关于科研通互助平台的介绍 1366148