Comprehensive Evaluation of Machine Learning Models and Gene Expression Signatures for Prostate Cancer Prognosis Using Large Population Cohorts.

前列腺癌 比例危险模型 医学 肿瘤科 机器学习 人口 计算机科学 人工智能 数据挖掘 生物信息学 内科学
作者
Ruidong Li,Jianguo Zhu,Wei-De Zhong,Zhenyu Jia
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (9): 1832-1843
标识
DOI:10.1158/0008-5472.can-21-3074
摘要

Overtreatment remains a pervasive problem in prostate cancer management due to the highly variable and often indolent course of disease. Molecular signatures derived from gene expression profiling have played critical roles in guiding prostate cancer treatment decisions. Many gene expression signatures have been developed to improve the risk stratification of prostate cancer and some of them have already been applied to clinical practice. However, no comprehensive evaluation has been performed to compare the performance of these signatures. In this study, we conducted a systematic and unbiased evaluation of 15 machine learning (ML) algorithms and 30 published prostate cancer gene expression-based prognostic signatures leveraging 10 transcriptomics datasets with 1,558 primary patients with prostate cancer from public data repositories. This analysis revealed that survival analysis models outperformed binary classification models for risk assessment, and the performance of the survival analysis methods-Cox model regularized with ridge penalty (Cox-Ridge) and partial least squares (PLS) regression for Cox model (Cox-PLS)-were generally more robust than the other methods. Based on the Cox-Ridge algorithm, several top prognostic signatures displayed comparable or even better performance than commercial panels. These findings will facilitate the identification of existing prognostic signatures that are promising for further validation in prospective studies and promote the development of robust prognostic models to guide clinical decision-making. Moreover, this study provides a valuable data resource from large primary prostate cancer cohorts, which can be used to develop, validate, and evaluate novel statistical methodologies and molecular signatures to improve prostate cancer management.This systematic evaluation of 15 machine learning algorithms and 30 published gene expression signatures for the prognosis of prostate cancer will assist clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助LC采纳,获得10
3秒前
@@@完成签到,获得积分20
5秒前
Dskelf完成签到,获得积分10
5秒前
友好半邪完成签到,获得积分20
6秒前
ZJZALLEN完成签到 ,获得积分10
6秒前
云枝完成签到,获得积分10
7秒前
joywu05发布了新的文献求助10
8秒前
YYH发布了新的文献求助10
8秒前
9秒前
阿巴阿巴完成签到,获得积分10
9秒前
9秒前
细腻的仙人掌完成签到,获得积分10
9秒前
10秒前
所所应助乐乐采纳,获得10
11秒前
11秒前
12秒前
Ava应助Dskelf采纳,获得10
12秒前
12秒前
13秒前
13秒前
打打发布了新的文献求助10
13秒前
Jasper应助小马采纳,获得10
13秒前
13秒前
共享精神应助阿巴阿巴采纳,获得10
13秒前
14秒前
14秒前
mingkle应助专注绿真采纳,获得20
14秒前
小二郎应助小于采纳,获得10
15秒前
hohokuz完成签到,获得积分10
15秒前
小陈发布了新的文献求助10
15秒前
15秒前
所所应助认真烨华采纳,获得10
16秒前
16秒前
季不住完成签到,获得积分10
16秒前
ADAMWS完成签到,获得积分10
16秒前
YYH完成签到,获得积分10
17秒前
华仔应助陆柒白采纳,获得10
18秒前
South朝484发布了新的文献求助10
18秒前
老程完成签到,获得积分10
18秒前
金j完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154185
求助须知:如何正确求助?哪些是违规求助? 2805059
关于积分的说明 7863283
捐赠科研通 2463232
什么是DOI,文献DOI怎么找? 1311173
科研通“疑难数据库(出版商)”最低求助积分说明 629464
版权声明 601821