亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comprehensive Evaluation of Machine Learning Models and Gene Expression Signatures for Prostate Cancer Prognosis Using Large Population Cohorts.

前列腺癌 比例危险模型 医学 肿瘤科 机器学习 人口 计算机科学 人工智能 数据挖掘 生物信息学 内科学
作者
Ruidong Li,Jianguo Zhu,Wei-De Zhong,Zhenyu Jia
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (9): 1832-1843
标识
DOI:10.1158/0008-5472.can-21-3074
摘要

Overtreatment remains a pervasive problem in prostate cancer management due to the highly variable and often indolent course of disease. Molecular signatures derived from gene expression profiling have played critical roles in guiding prostate cancer treatment decisions. Many gene expression signatures have been developed to improve the risk stratification of prostate cancer and some of them have already been applied to clinical practice. However, no comprehensive evaluation has been performed to compare the performance of these signatures. In this study, we conducted a systematic and unbiased evaluation of 15 machine learning (ML) algorithms and 30 published prostate cancer gene expression-based prognostic signatures leveraging 10 transcriptomics datasets with 1,558 primary patients with prostate cancer from public data repositories. This analysis revealed that survival analysis models outperformed binary classification models for risk assessment, and the performance of the survival analysis methods-Cox model regularized with ridge penalty (Cox-Ridge) and partial least squares (PLS) regression for Cox model (Cox-PLS)-were generally more robust than the other methods. Based on the Cox-Ridge algorithm, several top prognostic signatures displayed comparable or even better performance than commercial panels. These findings will facilitate the identification of existing prognostic signatures that are promising for further validation in prospective studies and promote the development of robust prognostic models to guide clinical decision-making. Moreover, this study provides a valuable data resource from large primary prostate cancer cohorts, which can be used to develop, validate, and evaluate novel statistical methodologies and molecular signatures to improve prostate cancer management.This systematic evaluation of 15 machine learning algorithms and 30 published gene expression signatures for the prognosis of prostate cancer will assist clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bbsheng完成签到,获得积分10
7秒前
32秒前
学术小白完成签到,获得积分0
34秒前
34秒前
馆长举报waoller1求助涉嫌违规
34秒前
可爱的函函应助cctoday采纳,获得10
48秒前
Wyoou发布了新的文献求助10
49秒前
52秒前
XiaoLiu应助Virtual采纳,获得50
1分钟前
GIA完成签到,获得积分10
1分钟前
852应助wuran采纳,获得10
1分钟前
XiaoLiu应助Virtual采纳,获得50
1分钟前
1分钟前
1分钟前
1分钟前
wuran发布了新的文献求助10
1分钟前
cctoday发布了新的文献求助10
1分钟前
馆长应助wuran采纳,获得30
1分钟前
cctoday完成签到,获得积分10
2分钟前
2分钟前
粥粥完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
自由的无色完成签到 ,获得积分10
2分钟前
2分钟前
爱吃皮囊的大馋虫完成签到,获得积分10
2分钟前
2分钟前
石石夏发布了新的文献求助10
3分钟前
香蕉觅云应助石石夏采纳,获得10
3分钟前
Una完成签到,获得积分20
3分钟前
3分钟前
honphyjiang发布了新的文献求助10
3分钟前
馆长举报曾丹么么哒求助涉嫌违规
3分钟前
dormraider完成签到,获得积分10
4分钟前
彭于晏应助方俊驰采纳,获得10
4分钟前
4分钟前
4分钟前
方俊驰发布了新的文献求助10
4分钟前
方俊驰完成签到,获得积分10
4分钟前
honphyjiang完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568572
求助须知:如何正确求助?哪些是违规求助? 3991139
关于积分的说明 12355423
捐赠科研通 3663104
什么是DOI,文献DOI怎么找? 2018685
邀请新用户注册赠送积分活动 1053099
科研通“疑难数据库(出版商)”最低求助积分说明 940689