Comprehensive Evaluation of Machine Learning Models and Gene Expression Signatures for Prostate Cancer Prognosis Using Large Population Cohorts.

前列腺癌 比例危险模型 医学 肿瘤科 机器学习 人口 计算机科学 人工智能 数据挖掘 生物信息学 内科学
作者
Ruidong Li,Jianguo Zhu,Wei-De Zhong,Zhenyu Jia
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (9): 1832-1843
标识
DOI:10.1158/0008-5472.can-21-3074
摘要

Overtreatment remains a pervasive problem in prostate cancer management due to the highly variable and often indolent course of disease. Molecular signatures derived from gene expression profiling have played critical roles in guiding prostate cancer treatment decisions. Many gene expression signatures have been developed to improve the risk stratification of prostate cancer and some of them have already been applied to clinical practice. However, no comprehensive evaluation has been performed to compare the performance of these signatures. In this study, we conducted a systematic and unbiased evaluation of 15 machine learning (ML) algorithms and 30 published prostate cancer gene expression-based prognostic signatures leveraging 10 transcriptomics datasets with 1,558 primary patients with prostate cancer from public data repositories. This analysis revealed that survival analysis models outperformed binary classification models for risk assessment, and the performance of the survival analysis methods-Cox model regularized with ridge penalty (Cox-Ridge) and partial least squares (PLS) regression for Cox model (Cox-PLS)-were generally more robust than the other methods. Based on the Cox-Ridge algorithm, several top prognostic signatures displayed comparable or even better performance than commercial panels. These findings will facilitate the identification of existing prognostic signatures that are promising for further validation in prospective studies and promote the development of robust prognostic models to guide clinical decision-making. Moreover, this study provides a valuable data resource from large primary prostate cancer cohorts, which can be used to develop, validate, and evaluate novel statistical methodologies and molecular signatures to improve prostate cancer management.This systematic evaluation of 15 machine learning algorithms and 30 published gene expression signatures for the prognosis of prostate cancer will assist clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttttsy完成签到 ,获得积分10
1秒前
milk完成签到,获得积分10
1秒前
万能图书馆应助虎帅采纳,获得10
2秒前
Reuben发布了新的文献求助10
2秒前
健壮的怜烟应助半柚采纳,获得20
3秒前
wu8577应助qyl1023采纳,获得10
4秒前
柯一一应助耍酷钥匙采纳,获得10
4秒前
Lucas应助耍酷钥匙采纳,获得10
4秒前
5秒前
liuminyi发布了新的文献求助10
6秒前
cyanpomelo发布了新的文献求助20
6秒前
7秒前
Akim应助山丘采纳,获得10
7秒前
隐形曼青应助Tianji采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
zzz发布了新的文献求助30
11秒前
11秒前
13秒前
雅丽发布了新的文献求助10
13秒前
14秒前
SYLH应助达克赛德采纳,获得10
14秒前
烟花应助余闻问采纳,获得10
14秒前
虎帅发布了新的文献求助10
15秒前
midokaori发布了新的文献求助10
15秒前
15秒前
席江海完成签到,获得积分10
16秒前
17秒前
19秒前
赵亚男完成签到,获得积分10
19秒前
凌露完成签到 ,获得积分0
19秒前
21秒前
LEMONS应助黄启烽采纳,获得10
21秒前
WZ0904发布了新的文献求助10
22秒前
研友_ZGDVz8完成签到,获得积分10
22秒前
May应助林哈哈哈哈啊啊哈采纳,获得20
22秒前
小王发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956369
求助须知:如何正确求助?哪些是违规求助? 3502503
关于积分的说明 11108341
捐赠科研通 3233197
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870528
科研通“疑难数据库(出版商)”最低求助积分说明 802105