亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comprehensive Evaluation of Machine Learning Models and Gene Expression Signatures for Prostate Cancer Prognosis Using Large Population Cohorts.

前列腺癌 比例危险模型 医学 肿瘤科 机器学习 人口 计算机科学 人工智能 数据挖掘 生物信息学 内科学
作者
Ruidong Li,Jianguo Zhu,Wei-De Zhong,Zhenyu Jia
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (9): 1832-1843
标识
DOI:10.1158/0008-5472.can-21-3074
摘要

Overtreatment remains a pervasive problem in prostate cancer management due to the highly variable and often indolent course of disease. Molecular signatures derived from gene expression profiling have played critical roles in guiding prostate cancer treatment decisions. Many gene expression signatures have been developed to improve the risk stratification of prostate cancer and some of them have already been applied to clinical practice. However, no comprehensive evaluation has been performed to compare the performance of these signatures. In this study, we conducted a systematic and unbiased evaluation of 15 machine learning (ML) algorithms and 30 published prostate cancer gene expression-based prognostic signatures leveraging 10 transcriptomics datasets with 1,558 primary patients with prostate cancer from public data repositories. This analysis revealed that survival analysis models outperformed binary classification models for risk assessment, and the performance of the survival analysis methods-Cox model regularized with ridge penalty (Cox-Ridge) and partial least squares (PLS) regression for Cox model (Cox-PLS)-were generally more robust than the other methods. Based on the Cox-Ridge algorithm, several top prognostic signatures displayed comparable or even better performance than commercial panels. These findings will facilitate the identification of existing prognostic signatures that are promising for further validation in prospective studies and promote the development of robust prognostic models to guide clinical decision-making. Moreover, this study provides a valuable data resource from large primary prostate cancer cohorts, which can be used to develop, validate, and evaluate novel statistical methodologies and molecular signatures to improve prostate cancer management.This systematic evaluation of 15 machine learning algorithms and 30 published gene expression signatures for the prognosis of prostate cancer will assist clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耶斯发布了新的文献求助10
6秒前
9秒前
TingtingGZ发布了新的文献求助10
14秒前
荼蘼完成签到,获得积分20
14秒前
汉堡包应助耶斯采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
1分钟前
Chloe应助科研通管家采纳,获得10
1分钟前
1分钟前
十三发布了新的文献求助10
1分钟前
城南花已开完成签到,获得积分10
1分钟前
科研通AI5应助十三采纳,获得30
1分钟前
花花完成签到 ,获得积分10
1分钟前
十三完成签到,获得积分20
1分钟前
火星上的博涛完成签到,获得积分20
2分钟前
穆振家完成签到,获得积分10
2分钟前
king完成签到 ,获得积分10
2分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI6应助勤劳初雪采纳,获得10
3分钟前
浮游应助勤劳初雪采纳,获得10
3分钟前
女爰舍予完成签到 ,获得积分10
3分钟前
李健应助勤劳初雪采纳,获得10
3分钟前
予秋发布了新的文献求助10
4分钟前
4分钟前
4分钟前
勤劳初雪完成签到 ,获得积分10
4分钟前
予秋发布了新的文献求助10
4分钟前
丘比特应助隐形的小刺猬采纳,获得10
4分钟前
4分钟前
AS发布了新的文献求助10
5分钟前
Chloe应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
柠檬完成签到,获得积分10
5分钟前
AS完成签到,获得积分10
5分钟前
完美世界应助TingtingGZ采纳,获得10
6分钟前
6分钟前
TingtingGZ发布了新的文献求助10
6分钟前
lifenghou完成签到 ,获得积分10
7分钟前
Chloe应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900728
求助须知:如何正确求助?哪些是违规求助? 4180509
关于积分的说明 12976906
捐赠科研通 3945262
什么是DOI,文献DOI怎么找? 2164035
邀请新用户注册赠送积分活动 1182326
关于科研通互助平台的介绍 1088546