Stacking Deep learning and Machine learning models for short-term energy consumption forecasting

梯度升压 集合预报 集成学习 随机森林 人工智能 计算机科学 极限学习机 Boosting(机器学习) 机器学习 期限(时间) 深度学习 能源消耗 决策树 人工神经网络 工程类 物理 电气工程 量子力学
作者
Sujan Reddy A,S. Akashdeep,R. Harshvardhan,S. Sowmya Kamath
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:52: 101542-101542 被引量:40
标识
DOI:10.1016/j.aei.2022.101542
摘要

Accurate prediction of electricity consumption is essential for providing actionable insights to decision-makers for managing volume and potential trends in future energy consumption for efficient resource management. A single model might not be sufficient to solve the challenges that result from linear and non-linear problems that occur in electricity consumption prediction. Moreover, these models cannot be applied in practice because they are either not interpretable or poorly generalized. In this paper, a stacking ensemble model for short-term electricity consumption is proposed. We experimented with machine learning and deep models like Random Forests, Long Short Term Memory, Deep Neural Networks, and Evolutionary Trees as our base models. Based on the experimental observations, two different ensemble models are proposed, where the predictions of the base models are combined using Gradient Boosting and Extreme Gradient Boosting (XGB). The proposed ensemble models were tested on a standard dataset that contains around 500,000 electricity consumption values, measured at periodic intervals, over the span of 9 years. Experimental validation revealed that the proposed ensemble model built on XGB reduces the training time of the second layer of the ensemble by a factor of close to 10 compared to the state-of-the-art , and also is more accurate. An average reduction of approximately 39% was observed in the Root mean square error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kingwill应助jessie采纳,获得20
1秒前
ws完成签到 ,获得积分10
1秒前
威武鸽子发布了新的文献求助10
2秒前
科目三应助branka采纳,获得10
3秒前
钟哈哈发布了新的文献求助10
3秒前
pxb完成签到,获得积分10
5秒前
粗心的蒙蒙完成签到,获得积分10
5秒前
可爱的函函应助宝海青采纳,获得10
5秒前
搬砖人发布了新的文献求助10
5秒前
6秒前
Tourist应助知之采纳,获得15
6秒前
PPPPP星星完成签到,获得积分10
7秒前
ccc完成签到,获得积分10
7秒前
8秒前
qq完成签到,获得积分10
8秒前
柠萌应助Snoopy采纳,获得10
8秒前
大胆的衬衫完成签到,获得积分10
9秒前
粉色苏打发布了新的文献求助50
9秒前
认真夜云完成签到,获得积分10
9秒前
10秒前
10秒前
qq发布了新的文献求助10
11秒前
sui完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
12秒前
网名还没想好完成签到,获得积分10
12秒前
luke17743508621完成签到 ,获得积分10
12秒前
13秒前
西西完成签到,获得积分10
13秒前
13秒前
jenningseastera应助刘兄采纳,获得30
13秒前
fjnm完成签到,获得积分10
13秒前
marina完成签到,获得积分20
14秒前
卡塔赫纳完成签到 ,获得积分10
14秒前
九点半上课了完成签到,获得积分10
14秒前
ZHU发布了新的文献求助10
14秒前
15秒前
sui发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950510
求助须知:如何正确求助?哪些是违规求助? 3495946
关于积分的说明 11079852
捐赠科研通 3226328
什么是DOI,文献DOI怎么找? 1783799
邀请新用户注册赠送积分活动 867892
科研通“疑难数据库(出版商)”最低求助积分说明 800942