A combination model of wavelet analysis and neural network for predicting oil and gas exploration accidents

人工神经网络 计算机科学 小波 人工智能 事故(哲学) 机器学习 噪音(视频) 数据挖掘 图像(数学) 哲学 认识论
作者
Bo Zhang,Yunrui Zhang,Xi Chen,Shiyuan Dai,Zuoling You
出处
期刊:Petroleum Science and Technology [Taylor & Francis]
卷期号:40 (10): 1173-1189 被引量:2
标识
DOI:10.1080/10916466.2021.2015378
摘要

Oil and gas exploration (OGE) accidents are usually observed in severe fatalities. How to predicting risks of accidents at worksite in a targeted way is still a challenge, but few researchers have studied this issue due to lack of accident data from the worksite. To address this problem, the accident cases for the past 50 years in a globally operated OGE company are collected as a basis, and a wavelet neural network (WNN) accident prediction model which combines the wavelet analysis and the traditional BP-neural network (BPNN) to predict the OGE accident has been developed in this paper. The wavelet denoising processing is used to effectively remove high-frequency noise of the data series, as well as to conform with the original data trend simultaneously. The denoised data is imported to BPNN for WNN model training. The trained WNN is used for OGE accident prediction, and a comparative study has been conducted between the prediction results from the WNN model and the traditional BPNN. The comparison results indicate that the WNN model is more precise. An application study of this prediction model has been discussed. This method can be used to provide targeted pre-warning information and corresponding prevention strategies before conducting OGE fieldwork. This is expected to improve the safety of OGE field operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guangshuang发布了新的文献求助10
刚刚
眯眯眼的衬衫应助小淘气采纳,获得10
4秒前
JamesPei应助aaaaa采纳,获得10
5秒前
CAOHOU举报细心小鸭子求助涉嫌违规
7秒前
Merlin应助Zack采纳,获得30
8秒前
奋斗向南完成签到,获得积分10
8秒前
雪碧发布了新的文献求助20
8秒前
Hello应助坚强的赛凤采纳,获得10
8秒前
志轩应助李锐采纳,获得10
9秒前
酷炫鑫完成签到,获得积分10
10秒前
11秒前
小比熊完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
14秒前
15秒前
Rondab应助科研通管家采纳,获得10
15秒前
15秒前
Rondab应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
李健应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
16秒前
走四方应助科研通管家采纳,获得20
16秒前
16秒前
科目三应助科研通管家采纳,获得10
16秒前
潇洒应助科研通管家采纳,获得10
16秒前
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
酷波er应助李锐采纳,获得10
16秒前
研友_VZG7GZ应助李锐采纳,获得10
16秒前
桐桐应助李锐采纳,获得10
16秒前
李健的小迷弟应助李锐采纳,获得10
16秒前
隐形曼青应助李锐采纳,获得10
17秒前
as发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959141
求助须知:如何正确求助?哪些是违规求助? 3505468
关于积分的说明 11123941
捐赠科研通 3237159
什么是DOI,文献DOI怎么找? 1788988
邀请新用户注册赠送积分活动 871478
科研通“疑难数据库(出版商)”最低求助积分说明 802824