A combination model of wavelet analysis and neural network for predicting oil and gas exploration accidents

人工神经网络 计算机科学 小波 人工智能 事故(哲学) 机器学习 噪音(视频) 数据挖掘 图像(数学) 哲学 认识论
作者
Bo Zhang,Yunrui Zhang,Xi Chen,Shiyuan Dai,Zuoling You
出处
期刊:Petroleum Science and Technology [Informa]
卷期号:40 (10): 1173-1189 被引量:2
标识
DOI:10.1080/10916466.2021.2015378
摘要

Oil and gas exploration (OGE) accidents are usually observed in severe fatalities. How to predicting risks of accidents at worksite in a targeted way is still a challenge, but few researchers have studied this issue due to lack of accident data from the worksite. To address this problem, the accident cases for the past 50 years in a globally operated OGE company are collected as a basis, and a wavelet neural network (WNN) accident prediction model which combines the wavelet analysis and the traditional BP-neural network (BPNN) to predict the OGE accident has been developed in this paper. The wavelet denoising processing is used to effectively remove high-frequency noise of the data series, as well as to conform with the original data trend simultaneously. The denoised data is imported to BPNN for WNN model training. The trained WNN is used for OGE accident prediction, and a comparative study has been conducted between the prediction results from the WNN model and the traditional BPNN. The comparison results indicate that the WNN model is more precise. An application study of this prediction model has been discussed. This method can be used to provide targeted pre-warning information and corresponding prevention strategies before conducting OGE fieldwork. This is expected to improve the safety of OGE field operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分20
2秒前
5秒前
niNe3YUE应助zhoumaoyuan采纳,获得10
7秒前
9秒前
11秒前
BowieHuang应助keyanxiaobaishu采纳,获得10
12秒前
Jenny发布了新的文献求助10
13秒前
fzh发布了新的文献求助10
16秒前
16秒前
17秒前
20秒前
KYTYYDS发布了新的文献求助10
21秒前
HanluMa完成签到 ,获得积分10
21秒前
fzh完成签到,获得积分10
25秒前
Jenny完成签到,获得积分10
27秒前
伟立完成签到,获得积分10
27秒前
34秒前
35秒前
然12138完成签到 ,获得积分10
35秒前
香蕉觅云应助SnownS采纳,获得10
35秒前
川荣李奈完成签到 ,获得积分10
39秒前
xinbowey发布了新的文献求助10
39秒前
火星上向珊完成签到,获得积分10
42秒前
44秒前
柳条儿完成签到,获得积分10
44秒前
如意幻枫完成签到,获得积分10
48秒前
49秒前
49秒前
渔婆发布了新的文献求助10
50秒前
52秒前
风趣的泥猴桃完成签到 ,获得积分10
53秒前
53秒前
zgsjymysmyy发布了新的文献求助30
54秒前
fuchao完成签到,获得积分10
54秒前
牧谷发布了新的文献求助10
55秒前
好吃的火龙果完成签到 ,获得积分10
56秒前
天边发布了新的文献求助10
57秒前
东方越彬发布了新的文献求助10
58秒前
赘婿应助sunny采纳,获得10
58秒前
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566