A combination model of wavelet analysis and neural network for predicting oil and gas exploration accidents

人工神经网络 计算机科学 小波 人工智能 事故(哲学) 机器学习 噪音(视频) 数据挖掘 图像(数学) 哲学 认识论
作者
Bo Zhang,Yunrui Zhang,Xi Chen,Shiyuan Dai,Zuoling You
出处
期刊:Petroleum Science and Technology [Informa]
卷期号:40 (10): 1173-1189 被引量:2
标识
DOI:10.1080/10916466.2021.2015378
摘要

Oil and gas exploration (OGE) accidents are usually observed in severe fatalities. How to predicting risks of accidents at worksite in a targeted way is still a challenge, but few researchers have studied this issue due to lack of accident data from the worksite. To address this problem, the accident cases for the past 50 years in a globally operated OGE company are collected as a basis, and a wavelet neural network (WNN) accident prediction model which combines the wavelet analysis and the traditional BP-neural network (BPNN) to predict the OGE accident has been developed in this paper. The wavelet denoising processing is used to effectively remove high-frequency noise of the data series, as well as to conform with the original data trend simultaneously. The denoised data is imported to BPNN for WNN model training. The trained WNN is used for OGE accident prediction, and a comparative study has been conducted between the prediction results from the WNN model and the traditional BPNN. The comparison results indicate that the WNN model is more precise. An application study of this prediction model has been discussed. This method can be used to provide targeted pre-warning information and corresponding prevention strategies before conducting OGE fieldwork. This is expected to improve the safety of OGE field operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桐桐应助paullned采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
杨文静完成签到 ,获得积分10
4秒前
4秒前
loop完成签到,获得积分10
5秒前
小二郎应助难过的谷芹采纳,获得10
5秒前
这家伙完成签到,获得积分20
5秒前
彭于晏应助周文凯采纳,获得30
6秒前
6秒前
123发布了新的文献求助20
7秒前
zhaoshuo发布了新的文献求助10
8秒前
君知完成签到,获得积分10
8秒前
9秒前
Fen3i发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
shawn完成签到 ,获得积分10
11秒前
lulu完成签到,获得积分10
13秒前
13秒前
闾丘笑卉完成签到,获得积分10
13秒前
15秒前
BareBear应助这家伙采纳,获得10
17秒前
17秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
handsome发布了新的文献求助10
19秒前
21秒前
annananana完成签到,获得积分10
21秒前
李卓航发布了新的文献求助20
22秒前
村长热爱美丽完成签到 ,获得积分10
23秒前
24秒前
山水之乐发布了新的文献求助10
24秒前
尔安完成签到,获得积分10
25秒前
彭于晏应助Fen3i采纳,获得10
27秒前
lunwenqigai发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
月星发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663721
求助须知:如何正确求助?哪些是违规求助? 4852264
关于积分的说明 15105525
捐赠科研通 4822005
什么是DOI,文献DOI怎么找? 2581120
邀请新用户注册赠送积分活动 1535274
关于科研通互助平台的介绍 1493652