A combination model of wavelet analysis and neural network for predicting oil and gas exploration accidents

人工神经网络 计算机科学 小波 人工智能 事故(哲学) 机器学习 噪音(视频) 数据挖掘 图像(数学) 认识论 哲学
作者
Bo Zhang,Yunrui Zhang,Xi Chen,Shiyuan Dai,Zuoling You
出处
期刊:Petroleum Science and Technology [Informa]
卷期号:40 (10): 1173-1189 被引量:2
标识
DOI:10.1080/10916466.2021.2015378
摘要

Oil and gas exploration (OGE) accidents are usually observed in severe fatalities. How to predicting risks of accidents at worksite in a targeted way is still a challenge, but few researchers have studied this issue due to lack of accident data from the worksite. To address this problem, the accident cases for the past 50 years in a globally operated OGE company are collected as a basis, and a wavelet neural network (WNN) accident prediction model which combines the wavelet analysis and the traditional BP-neural network (BPNN) to predict the OGE accident has been developed in this paper. The wavelet denoising processing is used to effectively remove high-frequency noise of the data series, as well as to conform with the original data trend simultaneously. The denoised data is imported to BPNN for WNN model training. The trained WNN is used for OGE accident prediction, and a comparative study has been conducted between the prediction results from the WNN model and the traditional BPNN. The comparison results indicate that the WNN model is more precise. An application study of this prediction model has been discussed. This method can be used to provide targeted pre-warning information and corresponding prevention strategies before conducting OGE fieldwork. This is expected to improve the safety of OGE field operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
L文甬完成签到,获得积分10
刚刚
刚刚
1234发布了新的文献求助10
2秒前
香酥板栗完成签到 ,获得积分10
3秒前
zmmmm完成签到,获得积分20
4秒前
狂野思卉发布了新的文献求助10
5秒前
打打应助L文甬采纳,获得10
6秒前
SciGPT应助北风语采纳,获得10
7秒前
9秒前
天天快乐应助1234采纳,获得10
10秒前
一年发十篇SCI完成签到,获得积分10
11秒前
郑阳发布了新的文献求助10
13秒前
yangjinru完成签到 ,获得积分10
15秒前
18秒前
咸鱼想翻身完成签到,获得积分10
20秒前
stephy发布了新的文献求助10
21秒前
Jasper应助stephy采纳,获得10
25秒前
课呢完成签到,获得积分10
25秒前
hhh发布了新的文献求助10
26秒前
郑阳完成签到,获得积分10
28秒前
jyx应助胡子采纳,获得10
31秒前
狂野思卉完成签到,获得积分10
31秒前
32秒前
33秒前
lovelife完成签到,获得积分10
33秒前
GC发布了新的文献求助10
37秒前
北风语发布了新的文献求助10
37秒前
40秒前
41秒前
ljh1771发布了新的文献求助50
41秒前
明理往事完成签到,获得积分10
41秒前
44秒前
stephy发布了新的文献求助10
46秒前
滴滴滴滴完成签到,获得积分10
47秒前
carm小蛋黄完成签到,获得积分10
47秒前
48秒前
北风语完成签到,获得积分10
51秒前
852应助天天扫大街采纳,获得10
51秒前
赘婿应助BoBo采纳,获得10
52秒前
闪闪尔白发布了新的文献求助10
57秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164130
求助须知:如何正确求助?哪些是违规求助? 2814873
关于积分的说明 7906891
捐赠科研通 2474467
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631841
版权声明 602228