A hybrid extreme learning machine model with harris hawks optimisation algorithm: an optimised model for product demand forecasting applications

极限学习机 均方误差 计算机科学 平均绝对百分比误差 自回归积分移动平均 人工神经网络 需求预测 产品(数学) 机器学习 人工智能 算法 数据挖掘 时间序列 统计 运筹学 数学 几何学
作者
K. Chaudhuri,Buğra Alkan
出处
期刊:Applied Intelligence [Springer Nature]
卷期号:52 (10): 11489-11505 被引量:27
标识
DOI:10.1007/s10489-022-03251-7
摘要

Abstract Accurate and real-time product demand forecasting is the need of the hour in the world of supply chain management. Predicting future product demand from historical sales data is a highly non-linear problem, subject to various external and environmental factors. In this work, we propose an optimised forecasting model - an extreme learning machine (ELM) model coupled with the Harris Hawks optimisation (HHO) algorithm to forecast product demand in an e-commerce company. ELM is preferred over traditional neural networks mainly due to its fast computational speed, which allows efficient demand forecasting in real-time. Our ELM-HHO model performed significantly better than ARIMA models that are commonly used in industries to forecast product demand. The performance of the proposed ELM-HHO model was also compared with traditional ELM, ELM auto-tuned using Bayesian Optimisation (ELM-BO), Gated Recurrent Unit (GRU) based recurrent neural network and Long Short Term Memory (LSTM) recurrent neural network models. Different performance metrics, i.e., Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Percentage Error (MPE) were used for the comparison of the selected models. Horizon forecasting at 3 days and 7 days ahead was also performed using the proposed approach. The results revealed that the proposed approach is superior to traditional product demand forecasting models in terms of prediction accuracy and it can be applied in real-time to predict future product demand based on the previous week’s sales data. In particular, considering RMSE of forecasting, the proposed ELM-HHO model performed 62.73% better than the statistical ARIMA(7,1,0) model, 40.73% better than the neural network based GRU model, 34.05% better than the neural network based LSTM model, 27.16% better than the traditional non-optimised ELM model with 100 hidden nodes and 11.63% better than the ELM-BO model in forecasting product demand for future 3 months. The novelty of the proposed approach lies in the way the fast computational speed of ELMs has been combined with the accuracy gained by tuning hyperparameters using HHO. An increased number of hyperparameters has been optimised in our methodology compared to available models. The majority of approaches to improve the accuracy of ELM so far have only focused on tuning the weights and the biases of the hidden layer. In our hybrid model, we tune the number of hidden nodes, the number of input time lags and even the type of activation function used in the hidden layer in addition to tuning the weights and the biases. This has resulted in a significant increase in accuracy over previous methods. Our work presents an original way of performing product demand forecasting in real-time in industry with highly accurate results which are much better than pre-existing demand forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
青子稚发布了新的文献求助10
刚刚
1秒前
YZZ发布了新的文献求助10
2秒前
宫铮发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
Lucas应助善良的凌瑶采纳,获得50
3秒前
美满香之关注了科研通微信公众号
3秒前
3秒前
4秒前
JiaweiZhang发布了新的文献求助10
4秒前
4秒前
土豆你个西红柿完成签到 ,获得积分10
5秒前
被迫学习一百年完成签到 ,获得积分20
5秒前
5秒前
小小怪兽发布了新的文献求助10
6秒前
6秒前
7秒前
cxr发布了新的文献求助10
7秒前
7秒前
踏实秋莲发布了新的文献求助10
7秒前
哈hahehe完成签到,获得积分10
8秒前
9秒前
周开心发布了新的文献求助10
9秒前
SH发布了新的文献求助10
9秒前
9秒前
logan发布了新的文献求助10
10秒前
sunc13发布了新的文献求助10
10秒前
zsz2016发布了新的文献求助10
10秒前
joji发布了新的文献求助10
10秒前
RHR发布了新的文献求助10
11秒前
12秒前
uulsj发布了新的文献求助10
12秒前
木皆完成签到,获得积分10
13秒前
脑洞疼应助Raul采纳,获得10
13秒前
hyy发布了新的文献求助10
14秒前
林夏果完成签到,获得积分10
16秒前
psg完成签到,获得积分10
16秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3177912
求助须知:如何正确求助?哪些是违规求助? 2828898
关于积分的说明 7968908
捐赠科研通 2490130
什么是DOI,文献DOI怎么找? 1327429
科研通“疑难数据库(出版商)”最低求助积分说明 635231
版权声明 602888