清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A hybrid extreme learning machine model with harris hawks optimisation algorithm: an optimised model for product demand forecasting applications

极限学习机 均方误差 计算机科学 平均绝对百分比误差 自回归积分移动平均 人工神经网络 需求预测 产品(数学) 机器学习 人工智能 算法 数据挖掘 时间序列 统计 运筹学 数学 几何学
作者
K. Chaudhuri,Buğra Alkan
出处
期刊:Applied Intelligence [Springer Science+Business Media]
卷期号:52 (10): 11489-11505 被引量:27
标识
DOI:10.1007/s10489-022-03251-7
摘要

Abstract Accurate and real-time product demand forecasting is the need of the hour in the world of supply chain management. Predicting future product demand from historical sales data is a highly non-linear problem, subject to various external and environmental factors. In this work, we propose an optimised forecasting model - an extreme learning machine (ELM) model coupled with the Harris Hawks optimisation (HHO) algorithm to forecast product demand in an e-commerce company. ELM is preferred over traditional neural networks mainly due to its fast computational speed, which allows efficient demand forecasting in real-time. Our ELM-HHO model performed significantly better than ARIMA models that are commonly used in industries to forecast product demand. The performance of the proposed ELM-HHO model was also compared with traditional ELM, ELM auto-tuned using Bayesian Optimisation (ELM-BO), Gated Recurrent Unit (GRU) based recurrent neural network and Long Short Term Memory (LSTM) recurrent neural network models. Different performance metrics, i.e., Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Percentage Error (MPE) were used for the comparison of the selected models. Horizon forecasting at 3 days and 7 days ahead was also performed using the proposed approach. The results revealed that the proposed approach is superior to traditional product demand forecasting models in terms of prediction accuracy and it can be applied in real-time to predict future product demand based on the previous week’s sales data. In particular, considering RMSE of forecasting, the proposed ELM-HHO model performed 62.73% better than the statistical ARIMA(7,1,0) model, 40.73% better than the neural network based GRU model, 34.05% better than the neural network based LSTM model, 27.16% better than the traditional non-optimised ELM model with 100 hidden nodes and 11.63% better than the ELM-BO model in forecasting product demand for future 3 months. The novelty of the proposed approach lies in the way the fast computational speed of ELMs has been combined with the accuracy gained by tuning hyperparameters using HHO. An increased number of hyperparameters has been optimised in our methodology compared to available models. The majority of approaches to improve the accuracy of ELM so far have only focused on tuning the weights and the biases of the hidden layer. In our hybrid model, we tune the number of hidden nodes, the number of input time lags and even the type of activation function used in the hidden layer in addition to tuning the weights and the biases. This has resulted in a significant increase in accuracy over previous methods. Our work presents an original way of performing product demand forecasting in real-time in industry with highly accurate results which are much better than pre-existing demand forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿色心情完成签到 ,获得积分10
15秒前
firesquall完成签到,获得积分10
16秒前
乏味完成签到,获得积分20
19秒前
乏味关注了科研通微信公众号
34秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
无心的尔阳完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
poki完成签到 ,获得积分10
1分钟前
英俊的铭应助典雅的荣轩采纳,获得10
2分钟前
知行者完成签到 ,获得积分10
2分钟前
小鱼女侠完成签到 ,获得积分10
2分钟前
房天川完成签到 ,获得积分10
2分钟前
水天一色发布了新的文献求助10
2分钟前
jerry完成签到 ,获得积分10
2分钟前
啾一口香菜完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
胡可完成签到 ,获得积分10
2分钟前
沙海沉戈完成签到,获得积分0
3分钟前
无悔完成签到 ,获得积分10
3分钟前
3分钟前
负责以山完成签到 ,获得积分10
3分钟前
zzzzz发布了新的文献求助10
3分钟前
烟雨江南完成签到,获得积分10
3分钟前
wyh295352318完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
zzzzz完成签到,获得积分10
4分钟前
4分钟前
4分钟前
刘刘完成签到 ,获得积分10
5分钟前
hyxu678完成签到,获得积分10
5分钟前
雷小牛完成签到 ,获得积分10
5分钟前
小蝴蝶完成签到,获得积分20
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
小蝴蝶发布了新的文献求助10
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015363
求助须知:如何正确求助?哪些是违规求助? 3555313
关于积分的说明 11317959
捐赠科研通 3288629
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 811983