A hybrid extreme learning machine model with harris hawks optimisation algorithm: an optimised model for product demand forecasting applications

极限学习机 均方误差 计算机科学 平均绝对百分比误差 自回归积分移动平均 人工神经网络 需求预测 产品(数学) 机器学习 人工智能 算法 数据挖掘 时间序列 统计 运筹学 数学 几何学
作者
K. Chaudhuri,Buğra Alkan
出处
期刊:Applied Intelligence [Springer Science+Business Media]
卷期号:52 (10): 11489-11505 被引量:27
标识
DOI:10.1007/s10489-022-03251-7
摘要

Abstract Accurate and real-time product demand forecasting is the need of the hour in the world of supply chain management. Predicting future product demand from historical sales data is a highly non-linear problem, subject to various external and environmental factors. In this work, we propose an optimised forecasting model - an extreme learning machine (ELM) model coupled with the Harris Hawks optimisation (HHO) algorithm to forecast product demand in an e-commerce company. ELM is preferred over traditional neural networks mainly due to its fast computational speed, which allows efficient demand forecasting in real-time. Our ELM-HHO model performed significantly better than ARIMA models that are commonly used in industries to forecast product demand. The performance of the proposed ELM-HHO model was also compared with traditional ELM, ELM auto-tuned using Bayesian Optimisation (ELM-BO), Gated Recurrent Unit (GRU) based recurrent neural network and Long Short Term Memory (LSTM) recurrent neural network models. Different performance metrics, i.e., Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Percentage Error (MPE) were used for the comparison of the selected models. Horizon forecasting at 3 days and 7 days ahead was also performed using the proposed approach. The results revealed that the proposed approach is superior to traditional product demand forecasting models in terms of prediction accuracy and it can be applied in real-time to predict future product demand based on the previous week’s sales data. In particular, considering RMSE of forecasting, the proposed ELM-HHO model performed 62.73% better than the statistical ARIMA(7,1,0) model, 40.73% better than the neural network based GRU model, 34.05% better than the neural network based LSTM model, 27.16% better than the traditional non-optimised ELM model with 100 hidden nodes and 11.63% better than the ELM-BO model in forecasting product demand for future 3 months. The novelty of the proposed approach lies in the way the fast computational speed of ELMs has been combined with the accuracy gained by tuning hyperparameters using HHO. An increased number of hyperparameters has been optimised in our methodology compared to available models. The majority of approaches to improve the accuracy of ELM so far have only focused on tuning the weights and the biases of the hidden layer. In our hybrid model, we tune the number of hidden nodes, the number of input time lags and even the type of activation function used in the hidden layer in addition to tuning the weights and the biases. This has resulted in a significant increase in accuracy over previous methods. Our work presents an original way of performing product demand forecasting in real-time in industry with highly accurate results which are much better than pre-existing demand forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助腦內小劇場采纳,获得10
刚刚
一碗豚骨拉面完成签到,获得积分10
刚刚
Herry完成签到,获得积分10
1秒前
厚礼羊发布了新的文献求助10
1秒前
李佳发布了新的文献求助10
1秒前
江屿发布了新的文献求助10
1秒前
1秒前
半岛铁拳发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
iiiiiuy完成签到,获得积分10
3秒前
遨游的人完成签到,获得积分10
3秒前
4秒前
章鱼小丸子完成签到 ,获得积分10
4秒前
一壶古酒应助shaangu623采纳,获得30
4秒前
bbq完成签到,获得积分20
4秒前
CipherSage应助yang采纳,获得10
4秒前
5秒前
6秒前
YUZ发布了新的文献求助10
6秒前
香蕉觅云应助晓槐采纳,获得10
6秒前
脑洞疼应助张成协采纳,获得10
7秒前
7秒前
7秒前
8秒前
相因发布了新的文献求助10
8秒前
健忘的妙松完成签到,获得积分10
8秒前
8秒前
8秒前
JamesPei应助天空的声音采纳,获得10
9秒前
111111完成签到,获得积分10
9秒前
空空道人发布了新的文献求助30
10秒前
10秒前
11秒前
mfy0068发布了新的文献求助10
11秒前
Akim应助小羊采纳,获得10
13秒前
niniyiya发布了新的文献求助10
13秒前
Yyyyy应助chris chen采纳,获得10
13秒前
zuolan发布了新的文献求助10
13秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5240038
求助须知:如何正确求助?哪些是违规求助? 4407262
关于积分的说明 13717766
捐赠科研通 4275912
什么是DOI,文献DOI怎么找? 2346201
邀请新用户注册赠送积分活动 1343431
关于科研通互助平台的介绍 1301395