数学
平均场理论
一般化
简单(哲学)
数理经济学
背景(考古学)
应用数学
序贯博弈
马尔可夫链
领域(数学)
广泛形式游戏
马尔可夫完全平衡
重复博弈
博弈论
纳什均衡
数学分析
纯数学
统计
认识论
物理
哲学
古生物学
量子力学
生物
作者
Luciano Campi,Markus Fischer
标识
DOI:10.1287/moor.2021.1206
摘要
In the context of simple finite-state discrete time systems, we introduce a generalization of a mean field game solution, called a correlated solution, which can be seen as the mean field game analogue of a correlated equilibrium. Our notion of a solution is justified in two ways: we prove that correlated solutions arise as limits of exchangeable correlated equilibria in restricted (Markov open-loop) strategies for the underlying N-player games, and we show how to construct approximate N-player correlated equilibria starting from a correlated solution to the mean field game.
科研通智能强力驱动
Strongly Powered by AbleSci AI