Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy

材料科学 共晶体系 高熵合金 延展性(地球科学) 合金 层错能 脆性 极限抗拉强度 层状结构 打滑(空气动力学) 复合材料 冶金 结晶学 热力学 蠕动 物理 化学
作者
Xuzhou Gao,Yiping Lu,Bo Zhang,Ningning Liang,Guanzhong Wu,Gang Sha,Jizi Liu,Yonghao Zhao
出处
期刊:Acta Materialia [Elsevier]
卷期号:141: 59-66 被引量:563
标识
DOI:10.1016/j.actamat.2017.07.041
摘要

Recent studies indicate that eutectic high-entropy alloys can simultaneously possess high strength and high ductility, which have potential applications in industrial fields. Nevertheless, microstructural origins of the excellent strength–ductility combination remain unclear. In this study, an AlCoCrFeNi2.1 eutectic high-entropy alloy was prepared with face-centered cubic (FCC)(L12)/body-centered-cubic (BCC)(B2) modulated lamellar structures and a remarkable combination of ultimate tensile strength (1351 MPa) and ductility (15.4%) using the classical casting technique. Post-deformation transmission electron microscopy revealed that the FCC(L12) phase was deformed in a matter of planar dislocation slip, with a slip system of {111} <110>, and stacking faults due to low stacking fault energy. Due to extreme solute drag, high densities of dislocations are distributed homogeneously at {111} slip plane. In the BCC(B2) phase, some dislocations exist on two {110} slip bands. The atom probe tomography analysis revealed a high density of Cr-enriched nano-precipitates, which strengthened the BCC(B2) phase by Orowan mechanisms. Fracture surface observation revealed a ductile fracture in the FCC(L12) phase and a brittle-like fracture in the BCC(B2) lamella. The underlying mechanism for the high strength and high ductility of AlCoCrFeNi2.1 eutectic high-entropy alloy was finally analyzed based on the coupling between the ductile FCC(L12) and brittle BCC(B2) phases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助学海无涯采纳,获得10
刚刚
wxd完成签到,获得积分10
刚刚
嗯嗯嗯完成签到,获得积分10
1秒前
yf_zhu关注了科研通微信公众号
1秒前
mtfx完成签到 ,获得积分10
1秒前
1秒前
帅气惜霜给帅气惜霜的求助进行了留言
1秒前
1秒前
2秒前
2秒前
3秒前
龙华之士发布了新的文献求助10
3秒前
bc完成签到,获得积分10
4秒前
H71000A发布了新的文献求助10
4秒前
dollarpuff完成签到,获得积分10
4秒前
科研通AI5应助当时明月在采纳,获得10
4秒前
yipyip完成签到,获得积分20
4秒前
Lxxixixi发布了新的文献求助10
5秒前
5秒前
润润轩轩发布了新的文献求助10
6秒前
lichaoyes发布了新的文献求助10
7秒前
王王的狗子完成签到 ,获得积分10
7秒前
zjuroc发布了新的文献求助20
7秒前
8秒前
浅笑发布了新的文献求助10
8秒前
文艺明杰发布了新的文献求助10
8秒前
8秒前
炙热冰夏发布了新的文献求助10
8秒前
8秒前
大意的青槐完成签到,获得积分10
9秒前
9秒前
nalan完成签到,获得积分10
9秒前
NN应助影子采纳,获得10
9秒前
天真思雁完成签到 ,获得积分10
10秒前
在水一方应助火星上白羊采纳,获得10
10秒前
小吕完成签到,获得积分10
11秒前
11秒前
wanci应助科研CY采纳,获得10
11秒前
Lxxixixi完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762