A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models

估计 工程类 要素(刑法) 回归 回归分析 计算机科学 振动 滚动轴承 统计 数学 机器学习 政治学 量子力学 物理 法学 系统工程
作者
Wasim Ahmad,Sheraz Ali Khan,M. M. Manjurul Islam,Jong-Myon Kim
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:184: 67-76 被引量:180
标识
DOI:10.1016/j.ress.2018.02.003
摘要

Induction motors most often fail due to faults in the rolling element bearings. Such failures can cause long and unscheduled downtime in a production facility, which can result in huge economic losses. The prediction of imminent failures and estimation of a bearing's remaining useful life (RUL) is vital for avoiding abrupt shutdowns and scheduling maintenance. In this paper, a reliable technique for the health prognosis of rolling element bearings is proposed, which infers a bearing's health through a dimensionless health indicator (HI) and estimates its RUL using dynamic regression models. The HI measures the instantaneous vibration level of the bearing with respect to a normal baseline value. The regression models are recursively updated to capture the evolving trend in the bearing's health indicator and are then used to project the future values of the health indicator and estimate the RUL of the bearing. The RUL of a bearing is estimated after determining the time to start prediction (TSP) using a new approach. The proposed algorithm is tested and validated on the PRONOSTIA dataset, and its prognostic performance is compared with two state-of-the-art techniques that are based on the extended Kalman filter and an exponential model that is improved using particle filters. The experimental results demonstrate the excellent prognostic performance of the proposed method due to its ability to determine an appropriate TSP and dynamic calibration of the regression models to adopt to the evolving trend in the bearing health indicator.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张同学完成签到,获得积分10
刚刚
刘均珺发布了新的文献求助10
刚刚
刚刚
廖丽文完成签到,获得积分20
1秒前
1秒前
无花果应助momowang采纳,获得10
1秒前
wise111发布了新的文献求助10
1秒前
2秒前
2秒前
FashionBoy应助spwan采纳,获得10
3秒前
ji发布了新的文献求助10
3秒前
大模型应助暴富采纳,获得10
3秒前
pepsisery完成签到,获得积分10
3秒前
傲娇如天发布了新的文献求助10
3秒前
涪城的涪发布了新的文献求助10
3秒前
寒来暑往发布了新的文献求助10
3秒前
Li完成签到,获得积分10
4秒前
852应助神勇的天问采纳,获得10
4秒前
4秒前
4秒前
znt发布了新的文献求助20
4秒前
柳行天完成签到 ,获得积分10
4秒前
4秒前
传奇3应助花海采纳,获得10
4秒前
芹菜发布了新的文献求助10
5秒前
ZZ完成签到,获得积分10
6秒前
球球完成签到,获得积分10
6秒前
songcy7发布了新的文献求助10
6秒前
于予鱼完成签到,获得积分10
6秒前
Akim应助心驰天外采纳,获得10
6秒前
星辰大海应助sunidea采纳,获得10
7秒前
XXY完成签到,获得积分10
7秒前
穷光蛋完成签到,获得积分10
7秒前
新手菜鸟发布了新的文献求助10
7秒前
ZZL完成签到,获得积分10
8秒前
晚若旧发布了新的文献求助10
8秒前
8秒前
8秒前
大头牌金枪鱼完成签到,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769