A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models

停工期 卡尔曼滤波器 工程类 预测性维护 状态监测 回归 结构健康监测 回归分析 计算机科学 方位(导航) 振动 可靠性工程 滚动轴承 统计 结构工程 数学 人工智能 机器学习 物理 电气工程 量子力学
作者
Wasim Ahmad,Sheraz Ali Khan,Md. Nazrul Islam,Jong‐Myon Kim
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:184: 67-76 被引量:135
标识
DOI:10.1016/j.ress.2018.02.003
摘要

Induction motors most often fail due to faults in the rolling element bearings. Such failures can cause long and unscheduled downtime in a production facility, which can result in huge economic losses. The prediction of imminent failures and estimation of a bearing's remaining useful life (RUL) is vital for avoiding abrupt shutdowns and scheduling maintenance. In this paper, a reliable technique for the health prognosis of rolling element bearings is proposed, which infers a bearing's health through a dimensionless health indicator (HI) and estimates its RUL using dynamic regression models. The HI measures the instantaneous vibration level of the bearing with respect to a normal baseline value. The regression models are recursively updated to capture the evolving trend in the bearing's health indicator and are then used to project the future values of the health indicator and estimate the RUL of the bearing. The RUL of a bearing is estimated after determining the time to start prediction (TSP) using a new approach. The proposed algorithm is tested and validated on the PRONOSTIA dataset, and its prognostic performance is compared with two state-of-the-art techniques that are based on the extended Kalman filter and an exponential model that is improved using particle filters. The experimental results demonstrate the excellent prognostic performance of the proposed method due to its ability to determine an appropriate TSP and dynamic calibration of the regression models to adopt to the evolving trend in the bearing health indicator.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助Jimmy采纳,获得10
刚刚
刚刚
刚刚
芋圆Z.发布了新的文献求助10
1秒前
1秒前
东皇太憨完成签到,获得积分10
1秒前
1秒前
2秒前
润润轩轩发布了新的文献求助10
2秒前
2秒前
orixero应助韭黄采纳,获得10
3秒前
gnufgg完成签到,获得积分10
3秒前
科研通AI5应助tabor采纳,获得10
3秒前
3秒前
互助互惠互通完成签到,获得积分10
3秒前
脑洞疼应助ziyiziyi采纳,获得10
4秒前
4秒前
4秒前
屹舟完成签到,获得积分10
5秒前
zjudxn关注了科研通微信公众号
5秒前
6秒前
6秒前
科研通AI5应助hu970采纳,获得10
6秒前
6秒前
艺玲发布了新的文献求助10
7秒前
咚咚咚完成签到,获得积分10
7秒前
芋圆Z.完成签到,获得积分10
7秒前
atad2发布了新的文献求助10
7秒前
li梨完成签到,获得积分10
7秒前
8秒前
晏小敏完成签到,获得积分10
8秒前
爆米花应助风中寄云采纳,获得10
9秒前
屹舟发布了新的文献求助10
9秒前
Dou完成签到,获得积分10
9秒前
白泯完成签到,获得积分10
10秒前
1ssd发布了新的文献求助10
10秒前
667发布了新的文献求助10
10秒前
小二郎应助辰柒采纳,获得10
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759