A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models

估计 工程类 要素(刑法) 回归 回归分析 计算机科学 振动 滚动轴承 统计 数学 机器学习 政治学 法学 系统工程 物理 量子力学
作者
Wasim Ahmad,Sheraz Ali Khan,M. M. Manjurul Islam,Jong-Myon Kim
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:184: 67-76 被引量:180
标识
DOI:10.1016/j.ress.2018.02.003
摘要

Induction motors most often fail due to faults in the rolling element bearings. Such failures can cause long and unscheduled downtime in a production facility, which can result in huge economic losses. The prediction of imminent failures and estimation of a bearing's remaining useful life (RUL) is vital for avoiding abrupt shutdowns and scheduling maintenance. In this paper, a reliable technique for the health prognosis of rolling element bearings is proposed, which infers a bearing's health through a dimensionless health indicator (HI) and estimates its RUL using dynamic regression models. The HI measures the instantaneous vibration level of the bearing with respect to a normal baseline value. The regression models are recursively updated to capture the evolving trend in the bearing's health indicator and are then used to project the future values of the health indicator and estimate the RUL of the bearing. The RUL of a bearing is estimated after determining the time to start prediction (TSP) using a new approach. The proposed algorithm is tested and validated on the PRONOSTIA dataset, and its prognostic performance is compared with two state-of-the-art techniques that are based on the extended Kalman filter and an exponential model that is improved using particle filters. The experimental results demonstrate the excellent prognostic performance of the proposed method due to its ability to determine an appropriate TSP and dynamic calibration of the regression models to adopt to the evolving trend in the bearing health indicator.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
海纳百川完成签到,获得积分10
1秒前
2秒前
爆米花应助liufang采纳,获得10
2秒前
邱乐乐发布了新的文献求助150
3秒前
3秒前
连夜雪完成签到,获得积分10
3秒前
子车凡发布了新的文献求助10
3秒前
欣喜十八完成签到,获得积分10
3秒前
CC发布了新的文献求助10
4秒前
111完成签到,获得积分10
4秒前
Qiu完成签到,获得积分10
6秒前
6秒前
mmmaosheng完成签到,获得积分10
8秒前
啦啦啦完成签到,获得积分10
8秒前
8秒前
善学以致用应助随便采纳,获得10
8秒前
灰灰完成签到,获得积分10
9秒前
f1mike110发布了新的文献求助10
10秒前
陆倩完成签到,获得积分10
10秒前
天天快乐应助lihuahui采纳,获得10
11秒前
12秒前
让我毕业吧完成签到,获得积分10
12秒前
舒心完成签到 ,获得积分20
12秒前
CC完成签到,获得积分10
13秒前
Criminology34应助杨一乐采纳,获得10
13秒前
wanci应助细腻的夜天采纳,获得10
13秒前
李爱国应助工大搬砖战神采纳,获得10
13秒前
lalala发布了新的文献求助10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
Coai517完成签到 ,获得积分10
15秒前
15秒前
今后应助认真的TOTORO采纳,获得10
16秒前
复杂的含蕾完成签到 ,获得积分10
16秒前
...完成签到,获得积分10
17秒前
游一完成签到,获得积分10
17秒前
细雨听风完成签到,获得积分10
17秒前
胡佳文完成签到,获得积分10
18秒前
风吹麦田应助15169928657采纳,获得30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809