A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models

估计 工程类 要素(刑法) 回归 回归分析 计算机科学 振动 滚动轴承 统计 数学 机器学习 政治学 法学 系统工程 物理 量子力学
作者
Wasim Ahmad,Sheraz Ali Khan,M. M. Manjurul Islam,Jong-Myon Kim
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:184: 67-76 被引量:180
标识
DOI:10.1016/j.ress.2018.02.003
摘要

Induction motors most often fail due to faults in the rolling element bearings. Such failures can cause long and unscheduled downtime in a production facility, which can result in huge economic losses. The prediction of imminent failures and estimation of a bearing's remaining useful life (RUL) is vital for avoiding abrupt shutdowns and scheduling maintenance. In this paper, a reliable technique for the health prognosis of rolling element bearings is proposed, which infers a bearing's health through a dimensionless health indicator (HI) and estimates its RUL using dynamic regression models. The HI measures the instantaneous vibration level of the bearing with respect to a normal baseline value. The regression models are recursively updated to capture the evolving trend in the bearing's health indicator and are then used to project the future values of the health indicator and estimate the RUL of the bearing. The RUL of a bearing is estimated after determining the time to start prediction (TSP) using a new approach. The proposed algorithm is tested and validated on the PRONOSTIA dataset, and its prognostic performance is compared with two state-of-the-art techniques that are based on the extended Kalman filter and an exponential model that is improved using particle filters. The experimental results demonstrate the excellent prognostic performance of the proposed method due to its ability to determine an appropriate TSP and dynamic calibration of the regression models to adopt to the evolving trend in the bearing health indicator.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Oops完成签到,获得积分10
2秒前
2秒前
耍酷巧蕊发布了新的文献求助10
3秒前
3秒前
4秒前
hhhhh完成签到,获得积分10
4秒前
雷家发布了新的文献求助10
4秒前
4秒前
在水一方应助cxxx采纳,获得10
5秒前
5秒前
6秒前
6秒前
虚拟的若完成签到,获得积分10
6秒前
香蕉觅云应助大气凝云采纳,获得10
7秒前
卡乐李发布了新的文献求助10
7秒前
7秒前
JJ发布了新的文献求助10
7秒前
上官若男应助朴素珩采纳,获得10
8秒前
9秒前
wwwww发布了新的文献求助10
9秒前
9秒前
千羽汐完成签到,获得积分20
9秒前
10秒前
两张发布了新的文献求助10
11秒前
严天飞发布了新的文献求助10
12秒前
tyj发布了新的文献求助10
12秒前
12秒前
ZZZkn发布了新的文献求助10
14秒前
lixiao1912完成签到,获得积分10
15秒前
15秒前
cc发布了新的文献求助10
16秒前
被风吹过的路完成签到,获得积分10
16秒前
科目三应助Dec采纳,获得10
16秒前
SciGPT应助李李采纳,获得10
17秒前
找文献呢发布了新的文献求助10
17秒前
17秒前
奇点完成签到,获得积分10
17秒前
ctc完成签到,获得积分10
18秒前
lyman完成签到,获得积分10
19秒前
gxffxf完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679900
求助须知:如何正确求助?哪些是违规求助? 4994585
关于积分的说明 15171123
捐赠科研通 4839670
什么是DOI,文献DOI怎么找? 2593541
邀请新用户注册赠送积分活动 1546594
关于科研通互助平台的介绍 1504721