A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models

估计 工程类 要素(刑法) 回归 回归分析 计算机科学 振动 滚动轴承 统计 数学 机器学习 政治学 法学 系统工程 物理 量子力学
作者
Wasim Ahmad,Sheraz Ali Khan,M. M. Manjurul Islam,Jong-Myon Kim
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:184: 67-76 被引量:180
标识
DOI:10.1016/j.ress.2018.02.003
摘要

Induction motors most often fail due to faults in the rolling element bearings. Such failures can cause long and unscheduled downtime in a production facility, which can result in huge economic losses. The prediction of imminent failures and estimation of a bearing's remaining useful life (RUL) is vital for avoiding abrupt shutdowns and scheduling maintenance. In this paper, a reliable technique for the health prognosis of rolling element bearings is proposed, which infers a bearing's health through a dimensionless health indicator (HI) and estimates its RUL using dynamic regression models. The HI measures the instantaneous vibration level of the bearing with respect to a normal baseline value. The regression models are recursively updated to capture the evolving trend in the bearing's health indicator and are then used to project the future values of the health indicator and estimate the RUL of the bearing. The RUL of a bearing is estimated after determining the time to start prediction (TSP) using a new approach. The proposed algorithm is tested and validated on the PRONOSTIA dataset, and its prognostic performance is compared with two state-of-the-art techniques that are based on the extended Kalman filter and an exponential model that is improved using particle filters. The experimental results demonstrate the excellent prognostic performance of the proposed method due to its ability to determine an appropriate TSP and dynamic calibration of the regression models to adopt to the evolving trend in the bearing health indicator.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助Jiaxixi采纳,获得10
2秒前
shoolarli完成签到,获得积分10
2秒前
lamy发布了新的文献求助10
2秒前
2秒前
王金金完成签到,获得积分10
3秒前
冷傲曼冬完成签到 ,获得积分20
3秒前
4秒前
4秒前
多情捕发布了新的文献求助10
4秒前
shoolarli发布了新的文献求助10
5秒前
流沙发布了新的文献求助10
5秒前
genius发布了新的文献求助20
7秒前
7秒前
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
Melly发布了新的文献求助10
9秒前
9秒前
可爱的函函应助hfhfj采纳,获得10
10秒前
踏雪完成签到,获得积分10
10秒前
10秒前
香鸡滑菇完成签到,获得积分10
11秒前
幸运的蜥蜴完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
硫酸镁发布了新的文献求助30
15秒前
ZSW完成签到,获得积分10
15秒前
二零二六完成签到 ,获得积分10
15秒前
15秒前
15秒前
L1发布了新的文献求助10
16秒前
YXT981221完成签到 ,获得积分10
16秒前
混子小高完成签到 ,获得积分10
16秒前
zzx完成签到,获得积分10
16秒前
Kuuga发布了新的文献求助10
17秒前
华仔应助流沙采纳,获得10
17秒前
18秒前
ding应助舒服的西装采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468932
求助须知:如何正确求助?哪些是违规求助? 4572214
关于积分的说明 14334335
捐赠科研通 4499055
什么是DOI,文献DOI怎么找? 2464831
邀请新用户注册赠送积分活动 1453392
关于科研通互助平台的介绍 1427961