A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models

估计 工程类 要素(刑法) 回归 回归分析 计算机科学 振动 滚动轴承 统计 数学 机器学习 政治学 法学 系统工程 物理 量子力学
作者
Wasim Ahmad,Sheraz Ali Khan,M. M. Manjurul Islam,Jong-Myon Kim
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:184: 67-76 被引量:180
标识
DOI:10.1016/j.ress.2018.02.003
摘要

Induction motors most often fail due to faults in the rolling element bearings. Such failures can cause long and unscheduled downtime in a production facility, which can result in huge economic losses. The prediction of imminent failures and estimation of a bearing's remaining useful life (RUL) is vital for avoiding abrupt shutdowns and scheduling maintenance. In this paper, a reliable technique for the health prognosis of rolling element bearings is proposed, which infers a bearing's health through a dimensionless health indicator (HI) and estimates its RUL using dynamic regression models. The HI measures the instantaneous vibration level of the bearing with respect to a normal baseline value. The regression models are recursively updated to capture the evolving trend in the bearing's health indicator and are then used to project the future values of the health indicator and estimate the RUL of the bearing. The RUL of a bearing is estimated after determining the time to start prediction (TSP) using a new approach. The proposed algorithm is tested and validated on the PRONOSTIA dataset, and its prognostic performance is compared with two state-of-the-art techniques that are based on the extended Kalman filter and an exponential model that is improved using particle filters. The experimental results demonstrate the excellent prognostic performance of the proposed method due to its ability to determine an appropriate TSP and dynamic calibration of the regression models to adopt to the evolving trend in the bearing health indicator.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZiZi完成签到 ,获得积分10
1秒前
ZiZi完成签到 ,获得积分10
1秒前
有脾气的番茄完成签到,获得积分10
2秒前
qise发布了新的文献求助10
3秒前
科研通AI6应助kongshuai采纳,获得10
5秒前
hy1234发布了新的文献求助10
5秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
Eiu完成签到,获得积分20
9秒前
13秒前
小蘑菇应助科研小蔡采纳,获得10
13秒前
雷培发布了新的文献求助10
13秒前
15秒前
15秒前
慕青应助qwer采纳,获得10
16秒前
远道发布了新的文献求助10
17秒前
可爱的函函应助辛勤秋双采纳,获得10
18秒前
现代曼香完成签到 ,获得积分10
19秒前
大个应助Hin66采纳,获得10
19秒前
Cecilia发布了新的文献求助10
19秒前
李子昂发布了新的文献求助10
20秒前
刘优秀777发布了新的文献求助10
21秒前
隐形曼青应助小冯爱睡觉采纳,获得10
22秒前
22秒前
情怀应助灵巧映安采纳,获得10
24秒前
25秒前
25秒前
26秒前
lyr3120241059完成签到 ,获得积分10
27秒前
28秒前
乐乐应助丰富的宛亦采纳,获得10
28秒前
xxx发布了新的文献求助10
29秒前
所所应助玄叶采纳,获得10
29秒前
皓月星辰发布了新的文献求助10
29秒前
JamesPei应助咯咚采纳,获得10
30秒前
30秒前
zhuyouwang发布了新的文献求助10
30秒前
WHB发布了新的文献求助10
31秒前
31秒前
陶醉清完成签到,获得积分20
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526942
求助须知:如何正确求助?哪些是违规求助? 4616873
关于积分的说明 14556205
捐赠科研通 4555440
什么是DOI,文献DOI怎么找? 2496353
邀请新用户注册赠送积分活动 1476654
关于科研通互助平台的介绍 1448212