A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models

估计 工程类 要素(刑法) 回归 回归分析 计算机科学 振动 滚动轴承 统计 数学 机器学习 政治学 法学 系统工程 物理 量子力学
作者
Wasim Ahmad,Sheraz Ali Khan,M. M. Manjurul Islam,Jong-Myon Kim
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:184: 67-76 被引量:180
标识
DOI:10.1016/j.ress.2018.02.003
摘要

Induction motors most often fail due to faults in the rolling element bearings. Such failures can cause long and unscheduled downtime in a production facility, which can result in huge economic losses. The prediction of imminent failures and estimation of a bearing's remaining useful life (RUL) is vital for avoiding abrupt shutdowns and scheduling maintenance. In this paper, a reliable technique for the health prognosis of rolling element bearings is proposed, which infers a bearing's health through a dimensionless health indicator (HI) and estimates its RUL using dynamic regression models. The HI measures the instantaneous vibration level of the bearing with respect to a normal baseline value. The regression models are recursively updated to capture the evolving trend in the bearing's health indicator and are then used to project the future values of the health indicator and estimate the RUL of the bearing. The RUL of a bearing is estimated after determining the time to start prediction (TSP) using a new approach. The proposed algorithm is tested and validated on the PRONOSTIA dataset, and its prognostic performance is compared with two state-of-the-art techniques that are based on the extended Kalman filter and an exponential model that is improved using particle filters. The experimental results demonstrate the excellent prognostic performance of the proposed method due to its ability to determine an appropriate TSP and dynamic calibration of the regression models to adopt to the evolving trend in the bearing health indicator.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
刚刚
wendy完成签到,获得积分10
1秒前
qwer发布了新的文献求助10
1秒前
张立敏发布了新的文献求助10
1秒前
1秒前
田様应助欣喜绍辉采纳,获得10
1秒前
1秒前
万能图书馆应助蒙豆儿采纳,获得10
1秒前
栗悟饭完成签到,获得积分10
1秒前
千千晚星完成签到 ,获得积分10
2秒前
suiyue完成签到 ,获得积分10
2秒前
halo完成签到,获得积分10
2秒前
2秒前
D点发布了新的文献求助30
3秒前
FashionBoy应助77采纳,获得10
3秒前
李森发布了新的文献求助10
4秒前
桐桐应助YBR采纳,获得10
5秒前
桐桐应助杨莹采纳,获得10
5秒前
一只小喵完成签到,获得积分10
5秒前
平常水卉发布了新的文献求助10
5秒前
若曦发布了新的文献求助10
6秒前
英姑应助原子采纳,获得10
6秒前
Kate发布了新的文献求助10
6秒前
郑润意发布了新的文献求助10
6秒前
科研通AI6应助感动煎饼采纳,获得30
7秒前
wintew完成签到,获得积分10
7秒前
7秒前
yiyi发布了新的文献求助30
8秒前
8秒前
8秒前
9秒前
wintew发布了新的文献求助10
9秒前
ding应助chai采纳,获得10
10秒前
王不留行完成签到,获得积分10
10秒前
共享精神应助辣椒油采纳,获得10
10秒前
10秒前
MW完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577