A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models

估计 工程类 要素(刑法) 回归 回归分析 计算机科学 振动 滚动轴承 统计 数学 机器学习 政治学 法学 系统工程 物理 量子力学
作者
Wasim Ahmad,Sheraz Ali Khan,M. M. Manjurul Islam,Jong-Myon Kim
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:184: 67-76 被引量:180
标识
DOI:10.1016/j.ress.2018.02.003
摘要

Induction motors most often fail due to faults in the rolling element bearings. Such failures can cause long and unscheduled downtime in a production facility, which can result in huge economic losses. The prediction of imminent failures and estimation of a bearing's remaining useful life (RUL) is vital for avoiding abrupt shutdowns and scheduling maintenance. In this paper, a reliable technique for the health prognosis of rolling element bearings is proposed, which infers a bearing's health through a dimensionless health indicator (HI) and estimates its RUL using dynamic regression models. The HI measures the instantaneous vibration level of the bearing with respect to a normal baseline value. The regression models are recursively updated to capture the evolving trend in the bearing's health indicator and are then used to project the future values of the health indicator and estimate the RUL of the bearing. The RUL of a bearing is estimated after determining the time to start prediction (TSP) using a new approach. The proposed algorithm is tested and validated on the PRONOSTIA dataset, and its prognostic performance is compared with two state-of-the-art techniques that are based on the extended Kalman filter and an exponential model that is improved using particle filters. The experimental results demonstrate the excellent prognostic performance of the proposed method due to its ability to determine an appropriate TSP and dynamic calibration of the regression models to adopt to the evolving trend in the bearing health indicator.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
风中雨筠发布了新的文献求助10
3秒前
lalala完成签到,获得积分10
4秒前
DerekFan完成签到,获得积分20
4秒前
王启完成签到,获得积分10
4秒前
我是老大应助爱笑莹芝采纳,获得10
6秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
yryzst9899完成签到,获得积分10
9秒前
小金不想搞科研完成签到 ,获得积分10
9秒前
maolin完成签到,获得积分10
10秒前
田様应助小李李采纳,获得10
10秒前
浮游应助林三一采纳,获得10
10秒前
迅速翠花完成签到,获得积分20
13秒前
欧no完成签到,获得积分10
14秒前
明杰发布了新的文献求助10
14秒前
16秒前
15759869988完成签到,获得积分10
17秒前
17秒前
NexusExplorer应助caicai采纳,获得10
18秒前
xixilulixiu完成签到 ,获得积分10
19秒前
Modric发布了新的文献求助10
20秒前
20秒前
Zx_1993应助曹明佳采纳,获得10
21秒前
21秒前
nangua发布了新的文献求助10
22秒前
zhuyy完成签到,获得积分10
22秒前
22秒前
nikki完成签到,获得积分10
23秒前
风起云飞扬完成签到 ,获得积分10
23秒前
科研通AI6应助holmes采纳,获得10
23秒前
15759869988发布了新的文献求助30
23秒前
ll完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
科研通AI6应助开朗洋葱采纳,获得10
24秒前
HR完成签到,获得积分10
25秒前
南淮完成签到,获得积分10
25秒前
25秒前
无花果应助NEKO33采纳,获得10
28秒前
小李李发布了新的文献求助10
28秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5240586
求助须知:如何正确求助?哪些是违规求助? 4407621
关于积分的说明 13719345
捐赠科研通 4276417
什么是DOI,文献DOI怎么找? 2346549
邀请新用户注册赠送积分活动 1343707
关于科研通互助平台的介绍 1301744