Granular Data Aggregation: An Adaptive Principle of the Justifiable Granularity Approach

粒度 粒度计算 数据挖掘 计算机科学 数学优化 加权 粒子群优化 算法 数学 粗集 医学 操作系统 放射科
作者
Dan Wang,Witold Pedrycz,Zhiwu Li
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:49 (2): 417-426 被引量:36
标识
DOI:10.1109/tcyb.2017.2774831
摘要

The design of information granules assumes a central position in the discipline of Granular Computing and its applications. The principle of justifiable granularity offers a conceptually and algorithmically attractive way of designing information granule completed on a basis of some experimental evidence (especially present in the form of numeric data). This paper builds upon the existing principle and presents its significant generalization, referred here as an adaptive principle of justifiable information granularity. The method supports a granular data aggregation producing an optimal information granule (with the optimality expressed in terms of the criteria of coverage and specificity commonly used when characterizing quality of information granules). The flexibility of the method stems from an introduction of the adaptive weighting scheme of the data leading to a vector of weights used in the construction of the optimal information granule. A detailed design procedure is provided along with the required optimization vehicle (realized with the aid of the population-based optimization techniques, such as particle swarm optimization and differential evolution). Two direct application areas in which the principle becomes of direct usage include prediction of time series and prediction of spatial data. In both cases, it is advocated that the results formed by the principle are reflective of the precision (quality) of the prediction process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JIN完成签到,获得积分10
1秒前
Amber应助老疯智采纳,获得10
1秒前
星寒完成签到 ,获得积分10
1秒前
shen完成签到,获得积分10
3秒前
尊敬的发布了新的文献求助10
4秒前
zhenzhen发布了新的文献求助10
5秒前
5秒前
眼睛大的金鱼完成签到,获得积分10
5秒前
CipherSage应助不对也没错采纳,获得10
6秒前
曹梦梦发布了新的文献求助10
7秒前
JayWu完成签到,获得积分10
7秒前
7秒前
小马甲应助BaiX采纳,获得10
7秒前
大工梧桐发布了新的文献求助10
7秒前
香蕉君达完成签到,获得积分10
7秒前
8秒前
小马甲应助愉快的定帮采纳,获得10
8秒前
科目三应助自由刺猬采纳,获得20
9秒前
futing完成签到,获得积分10
9秒前
老鼠爱吃fish完成签到,获得积分10
9秒前
xiaoou完成签到,获得积分10
9秒前
科研通AI2S应助VDC采纳,获得10
10秒前
10秒前
胡天萌完成签到 ,获得积分10
10秒前
正义的小怪兽完成签到,获得积分20
10秒前
wanci应助刘星星采纳,获得10
10秒前
完美世界应助jekyll采纳,获得10
11秒前
自然怀梦完成签到,获得积分10
11秒前
11秒前
neo完成签到,获得积分10
12秒前
完美世界应助lyn采纳,获得30
12秒前
情怀应助Jackcaosky采纳,获得200
12秒前
123发布了新的文献求助10
12秒前
buno应助hhh采纳,获得10
13秒前
SYLH应助wltwb采纳,获得10
13秒前
Rui发布了新的文献求助10
13秒前
斯文败类应助快乐小文采纳,获得30
13秒前
15秒前
尹天扬完成签到,获得积分10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678