多孔性
比表面积
分子
材料科学
有机分子
晶体结构
化学工程
沸石
打赌理论
纳米技术
金属有机骨架
多孔介质
催化作用
曲面(拓扑)
结晶学
化学
吸附
复合材料
物理化学
有机化学
几何学
数学
工程类
作者
Hee K. Chae,Diana Y. Siberio-Pérez,Jaheon Kim,YongBok Go,Mohamed Eddaoudi,Adam J. Matzger,M. O’Keeffe,Omar M. Yaghi
出处
期刊:Nature
[Springer Nature]
日期:2004-02-01
卷期号:427 (6974): 523-527
被引量:2659
摘要
One of the outstanding challenges in the field of porous materials is the design and synthesis of chemical structures with exceptionally high surface areas. Such materials are of critical importance to many applications involving catalysis, separation and gas storage. The claim for the highest surface area of a disordered structure is for carbon, at 2,030 m2 g(-1) (ref. 2). Until recently, the largest surface area of an ordered structure was that of zeolite Y, recorded at 904 m2 g(-1) (ref. 3). But with the introduction of metal-organic framework materials, this has been exceeded, with values up to 3,000 m2 g(-1) (refs 4-7). Despite this, no method of determining the upper limit in surface area for a material has yet been found. Here we present a general strategy that has allowed us to realize a structure having by far the highest surface area reported to date. We report the design, synthesis and properties of crystalline Zn4O(1,3,5-benzenetribenzoate)2, a new metal-organic framework with a surface area estimated at 4,500 m2 g(-1). This framework, which we name MOF-177, combines this exceptional level of surface area with an ordered structure that has extra-large pores capable of binding polycyclic organic guest molecules--attributes not previously combined in one material.
科研通智能强力驱动
Strongly Powered by AbleSci AI