A model for optimally dispatching ambulances to emergency calls with classification errors in patient priorities

服务器 马尔可夫决策过程 计算机科学 过程(计算) 运筹学 服务(商务) 马尔可夫过程 决策支持系统 人工智能 工程类 业务 计算机网络 数学 统计 操作系统 营销
作者
Laura A. Albert,María E. Mayorga
出处
期刊:Iie Transactions [Informa]
卷期号:45 (1): 1-24 被引量:90
标识
DOI:10.1080/0740817x.2012.665200
摘要

Abstract The decision of which servers to dispatch to which customers is an important aspect of service systems. Such decisions are complicated when servers have different operating characteristics, customers are prioritized, and there are errors in assessing customer priorities. This article formulates a model for determining how to optimally dispatch servers to prioritized customers given that dispatchers make classification errors in assessing the true customer priorities. These issues are examined through the lens of Emergency Medical Service (EMS) dispatch, for which a Markov Decision Process (MDP) model is developed that captures how to optimally dispatch ambulances (servers) to prioritized patients (customers). It is assumed that patients arrive sequentially, with the location and perceived priority of each patient becoming known upon arrival. The proposed model determines how to optimally dispatch ambulances to patients to maximize the long-run average utility of the system, defined as the expected coverage of true high-risk patients. The utilities and transition probabilities are location dependent, with respect to both the ambulance and patient locations. The analysis considers two cases for approaching the classification errors that correspond to over- and under-responding to perceived patient risk. A computational example is applied to an EMS system. The optimal policies under different classification strategies are compared to a myopic policy and the effect that classification errors have on the performance of these policies is examined. Simulations suggest that the policies remain effective when they are applied to more realistic situations. Keywords: Emergency medical dispatchMarkov decision processes

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
动听的海亦完成签到,获得积分10
1秒前
wwy应助阿馨采纳,获得30
2秒前
芒果豆豆发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
CMUSK完成签到 ,获得积分10
2秒前
3秒前
zhou发布了新的文献求助10
3秒前
光亮的秋白完成签到 ,获得积分10
3秒前
爆米花应助张远最帅采纳,获得10
3秒前
3秒前
dbb发布了新的文献求助10
4秒前
4秒前
YOLO发布了新的文献求助10
4秒前
5秒前
杨旭完成签到,获得积分10
5秒前
完美世界应助无聊的小洁采纳,获得10
6秒前
6秒前
wifi发布了新的文献求助10
6秒前
FashionBoy应助Daisylee采纳,获得10
7秒前
李卓发布了新的文献求助10
7秒前
罐罐儿应助lliuqiq采纳,获得10
7秒前
着急的洋葱完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
Lexi完成签到 ,获得积分10
8秒前
Eason王发布了新的文献求助10
8秒前
张真牛发布了新的文献求助10
9秒前
稳重香芦发布了新的文献求助10
9秒前
友好访蕊发布了新的文献求助10
9秒前
9秒前
清秋1001发布了新的文献求助20
10秒前
万能图书馆应助南风采纳,获得10
10秒前
清脆晓曼完成签到,获得积分10
10秒前
gilderf完成签到,获得积分10
11秒前
大个应助明天会更美好采纳,获得10
11秒前
yangbinsci0827完成签到,获得积分10
11秒前
大圣来也完成签到 ,获得积分10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444