A model for optimally dispatching ambulances to emergency calls with classification errors in patient priorities

服务器 马尔可夫决策过程 计算机科学 过程(计算) 运筹学 服务(商务) 马尔可夫过程 决策支持系统 人工智能 工程类 业务 计算机网络 数学 统计 营销 操作系统
作者
Laura A. Albert,María E. Mayorga
出处
期刊:Iie Transactions [Informa]
卷期号:45 (1): 1-24 被引量:90
标识
DOI:10.1080/0740817x.2012.665200
摘要

Abstract The decision of which servers to dispatch to which customers is an important aspect of service systems. Such decisions are complicated when servers have different operating characteristics, customers are prioritized, and there are errors in assessing customer priorities. This article formulates a model for determining how to optimally dispatch servers to prioritized customers given that dispatchers make classification errors in assessing the true customer priorities. These issues are examined through the lens of Emergency Medical Service (EMS) dispatch, for which a Markov Decision Process (MDP) model is developed that captures how to optimally dispatch ambulances (servers) to prioritized patients (customers). It is assumed that patients arrive sequentially, with the location and perceived priority of each patient becoming known upon arrival. The proposed model determines how to optimally dispatch ambulances to patients to maximize the long-run average utility of the system, defined as the expected coverage of true high-risk patients. The utilities and transition probabilities are location dependent, with respect to both the ambulance and patient locations. The analysis considers two cases for approaching the classification errors that correspond to over- and under-responding to perceived patient risk. A computational example is applied to an EMS system. The optimal policies under different classification strategies are compared to a myopic policy and the effect that classification errors have on the performance of these policies is examined. Simulations suggest that the policies remain effective when they are applied to more realistic situations. Keywords: Emergency medical dispatchMarkov decision processes
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温水云完成签到,获得积分10
刚刚
刚刚
雁丘发布了新的文献求助10
刚刚
大个应助朵朵采纳,获得10
1秒前
阿桂完成签到,获得积分10
1秒前
1秒前
2秒前
yyy发布了新的文献求助10
3秒前
周凡淇发布了新的文献求助10
4秒前
5秒前
5秒前
aganer发布了新的文献求助10
5秒前
李爱国应助沉静翠丝采纳,获得10
6秒前
家湘发布了新的文献求助10
6秒前
8秒前
8秒前
靓丽访枫发布了新的文献求助10
9秒前
EW完成签到,获得积分10
9秒前
9秒前
好大一只小坏蛋完成签到,获得积分20
10秒前
Orange应助刘莱莱采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
ZeKaWa应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得30
12秒前
JuinZhu应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
14秒前
家湘完成签到,获得积分10
15秒前
Ergou发布了新的文献求助10
15秒前
16秒前
16秒前
朵朵完成签到,获得积分10
16秒前
爆米花应助滑稽剑客采纳,获得10
17秒前
18秒前
单薄的誉发布了新的文献求助10
18秒前
19秒前
朵朵发布了新的文献求助10
19秒前
NexusExplorer应助NSstupid采纳,获得10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526155
求助须知:如何正确求助?哪些是违规求助? 3106527
关于积分的说明 9280871
捐赠科研通 2804159
什么是DOI,文献DOI怎么找? 1539302
邀请新用户注册赠送积分活动 716522
科研通“疑难数据库(出版商)”最低求助积分说明 709495