亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A model for optimally dispatching ambulances to emergency calls with classification errors in patient priorities

服务器 马尔可夫决策过程 计算机科学 过程(计算) 运筹学 服务(商务) 马尔可夫过程 决策支持系统 人工智能 工程类 业务 计算机网络 数学 统计 操作系统 营销
作者
Laura A. Albert,María E. Mayorga
出处
期刊:Iie Transactions [Informa]
卷期号:45 (1): 1-24 被引量:90
标识
DOI:10.1080/0740817x.2012.665200
摘要

Abstract The decision of which servers to dispatch to which customers is an important aspect of service systems. Such decisions are complicated when servers have different operating characteristics, customers are prioritized, and there are errors in assessing customer priorities. This article formulates a model for determining how to optimally dispatch servers to prioritized customers given that dispatchers make classification errors in assessing the true customer priorities. These issues are examined through the lens of Emergency Medical Service (EMS) dispatch, for which a Markov Decision Process (MDP) model is developed that captures how to optimally dispatch ambulances (servers) to prioritized patients (customers). It is assumed that patients arrive sequentially, with the location and perceived priority of each patient becoming known upon arrival. The proposed model determines how to optimally dispatch ambulances to patients to maximize the long-run average utility of the system, defined as the expected coverage of true high-risk patients. The utilities and transition probabilities are location dependent, with respect to both the ambulance and patient locations. The analysis considers two cases for approaching the classification errors that correspond to over- and under-responding to perceived patient risk. A computational example is applied to an EMS system. The optimal policies under different classification strategies are compared to a myopic policy and the effect that classification errors have on the performance of these policies is examined. Simulations suggest that the policies remain effective when they are applied to more realistic situations. Keywords: Emergency medical dispatchMarkov decision processes

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助洞两采纳,获得10
5秒前
9秒前
淡然的蓝天完成签到 ,获得积分10
10秒前
huayu完成签到,获得积分10
12秒前
13秒前
猕猴桃完成签到,获得积分10
14秒前
余亚东发布了新的文献求助10
15秒前
wql完成签到,获得积分10
17秒前
江辰汐月发布了新的文献求助10
17秒前
情怀应助yik采纳,获得10
18秒前
从容冷安完成签到 ,获得积分10
21秒前
乐乐应助辛勤的映波采纳,获得10
24秒前
Hissio完成签到,获得积分10
28秒前
31秒前
栋栋完成签到 ,获得积分10
34秒前
1234完成签到,获得积分20
35秒前
我是老大应助甜蜜乐松采纳,获得10
35秒前
ceeray23发布了新的文献求助20
36秒前
38秒前
45秒前
William_l_c完成签到,获得积分10
51秒前
江辰汐月完成签到,获得积分10
59秒前
小二郎应助liuliu采纳,获得10
59秒前
一枚小豆完成签到,获得积分10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
pK完成签到 ,获得积分10
1分钟前
朴实的小萱完成签到 ,获得积分10
1分钟前
liuliu发布了新的文献求助10
1分钟前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
1分钟前
zxy完成签到,获得积分20
1分钟前
1分钟前
lcw1998完成签到 ,获得积分10
1分钟前
wenwj9发布了新的文献求助30
1分钟前
李爱国应助余亚东采纳,获得10
1分钟前
陈谦嵩完成签到 ,获得积分10
1分钟前
zxy发布了新的文献求助10
1分钟前
服了您完成签到 ,获得积分10
1分钟前
li完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606518
求助须知:如何正确求助?哪些是违规求助? 4690909
关于积分的说明 14866536
捐赠科研通 4706185
什么是DOI,文献DOI怎么找? 2542718
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276