Concurrent regulation of the transcription factors Nrf2 and ATF4 mediates the enhancement of glutathione levels by the flavonoid fisetin

谷胱甘肽 非西汀 ATF4 转录因子 氧化应激 细胞生物学 化学 下调和上调 药理学 细胞内 生物 生物化学 类黄酮 抗氧化剂 基因
作者
Jennifer Ehren,Pamela Maher
出处
期刊:Biochemical Pharmacology [Elsevier]
卷期号:85 (12): 1816-1826 被引量:75
标识
DOI:10.1016/j.bcp.2013.04.010
摘要

Glutathione (GSH) and GSH-associated metabolism provide the major line of defense for the protection of cells from various forms of toxic stress. GSH also plays a key role in regulating the intracellular redox environment. Thus, maintenance of GSH levels is developing into an important therapeutic objective for the treatment of a variety of diseases. Among the transcription factors that play critical roles in GSH metabolism are NF-E2-related factor 2 (Nrf2) and activating transcription factor 4 (ATF4). Thus, compounds that can upregulate these transcription factors may be particularly useful as treatment options through their effects on GSH metabolism. We previously showed that the flavonoid fisetin not only increases basal levels of GSH but also maintains GSH levels under oxidative stress conditions. However, the mechanisms underlying these effects have remained unknown until now. Here we show that fisetin rapidly increases the levels of both Nrf2 and ATF4 as well as Nrf2- and ATF4-dependent gene transcription via distinct mechanisms. Although fisetin greatly increases the stability of both Nrf2 and ATF4, only the effect on ATF4 is dependent on protein kinase activity. Using siRNA we found that ATF4, but not Nrf2, is important for fisetin's ability to increase GSH levels under basal conditions whereas both ATF4 and Nrf2 appear to cooperate to increase GSH levels under oxidative stress conditions. Based upon these results, we hypothesize that compounds able to increase GSH levels via multiple mechanisms, such as fisetin, will be particularly effective for maintaining GSH levels under a variety of different stresses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pny发布了新的文献求助10
1秒前
谷安发布了新的文献求助10
2秒前
2秒前
3秒前
zhou完成签到,获得积分10
3秒前
顾矜应助中级中级采纳,获得10
4秒前
6秒前
6秒前
chujyz完成签到 ,获得积分10
7秒前
9秒前
贾舒涵发布了新的文献求助10
10秒前
10秒前
sdpx完成签到 ,获得积分10
11秒前
pny发布了新的文献求助10
11秒前
可爱的函函应助CS采纳,获得10
11秒前
秦玉岩发布了新的文献求助10
12秒前
12秒前
LLLLLLLL完成签到,获得积分10
13秒前
15秒前
坤类化合物完成签到 ,获得积分10
15秒前
spirit发布了新的文献求助10
15秒前
失眠的晓绿完成签到,获得积分10
16秒前
16秒前
zhou发布了新的文献求助10
16秒前
18秒前
苏卿应助TS采纳,获得10
19秒前
wonder041应助YGYANG采纳,获得10
19秒前
pny发布了新的文献求助10
19秒前
19秒前
12GAO发布了新的文献求助10
20秒前
20秒前
胡楠完成签到,获得积分10
20秒前
西门子云完成签到,获得积分10
21秒前
武巧运完成签到,获得积分10
21秒前
longyuyan发布了新的文献求助150
22秒前
23秒前
24秒前
Owen应助liszari采纳,获得10
24秒前
Owen应助活泼的海豚采纳,获得10
24秒前
Jemma5599发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557572
求助须知:如何正确求助?哪些是违规求助? 3132664
关于积分的说明 9398623
捐赠科研通 2832834
什么是DOI,文献DOI怎么找? 1557063
邀请新用户注册赠送积分活动 727072
科研通“疑难数据库(出版商)”最低求助积分说明 716184