The Utility of Structure–Activity Relationship (SAR) Models for Prediction and Covariate Selection in Developmental Toxicity: Comparative Analysis of Logistic Regression and Decision Tree Models

协变量 逻辑回归 决策树 计量经济学 选择(遗传算法) 选型 统计 回归 逻辑模型树 回归分析 计算机科学 数学 机器学习
作者
Vincent C. Arena,Nancy B. Sussman,Sati Mazumdar,Shuang Yu,Orest T. Macina
出处
期刊:Sar and Qsar in Environmental Research [Informa]
卷期号:15 (1): 1-18 被引量:57
标识
DOI:10.1080/1062936032000169633
摘要

Structure–activity relationship (SAR) models can be used to predict the biological activity of potential developmental toxicants whose adverse effects include death, structural abnormalities, altered growth and functional deficiencies in the developing organism. Physico-chemical descriptors of spatial, electronic and lipophilic properties were used to derive SAR models by two modeling approaches, logistic regression and Classification and Regression Tree (CART), using a new developmental database of 293 chemicals (FDA/TERIS). Both single models and ensembles of models (termed bagging) were derived to predict toxicity. Assessment of the empirical distributions of the prediction measures was performed by repeated random partitioning of the data set. Results showed that both the decision tree and logistic regression derived developmental SAR models exhibited modest prediction accuracy. Bagging tended to enhance the prediction accuracy and reduced the variability of prediction measures compared to the single model for CART-based models but not consistently for logistic-based models. Prediction accuracy of single logistic-based models was higher than single CART-based models but bagged CART-based models were more predictive. Descriptor selection in SAR for the understanding of the developmental mechanism was highly dependent on the modeling approach. Although prediction accuracy was similar in the two modeling approaches, there was inconsistency in the model descriptors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
卷心菜完成签到,获得积分10
1秒前
xxxxxxxxx完成签到 ,获得积分10
2秒前
泡芙完成签到 ,获得积分10
3秒前
坚定的映寒完成签到 ,获得积分10
5秒前
CHANG完成签到 ,获得积分10
6秒前
陈大侠完成签到 ,获得积分10
8秒前
8秒前
标致的问晴完成签到,获得积分10
8秒前
自信的电灯胆完成签到,获得积分10
8秒前
香蕉完成签到 ,获得积分10
9秒前
科研通AI2S应助zzj采纳,获得10
11秒前
cessy完成签到,获得积分10
12秒前
13秒前
浅尝离白应助ananchen采纳,获得30
14秒前
关中人完成签到,获得积分10
15秒前
TT完成签到,获得积分10
15秒前
wsh完成签到 ,获得积分10
16秒前
zhenzheng完成签到 ,获得积分10
16秒前
好的番茄loconte完成签到,获得积分10
17秒前
17秒前
英姑应助OVERSEER采纳,获得10
17秒前
17秒前
夏秋完成签到 ,获得积分10
18秒前
20秒前
隐形的巴豆完成签到,获得积分10
21秒前
清爽的觅儿完成签到,获得积分10
22秒前
研友_VZG7GZ应助ahaa采纳,获得10
22秒前
22秒前
牵猫散步的鱼完成签到,获得积分10
22秒前
Lucas应助医路有你采纳,获得10
23秒前
上官聪展完成签到 ,获得积分0
23秒前
始终完成签到,获得积分10
24秒前
小西完成签到 ,获得积分10
24秒前
Isaac完成签到 ,获得积分10
24秒前
25秒前
无花果应助平常从蓉采纳,获得20
25秒前
李日辉发布了新的文献求助10
26秒前
wls完成签到 ,获得积分10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137211
求助须知:如何正确求助?哪些是违规求助? 2788244
关于积分的说明 7785274
捐赠科研通 2444247
什么是DOI,文献DOI怎么找? 1299869
科研通“疑难数据库(出版商)”最低求助积分说明 625606
版权声明 601023