The Utility of Structure–Activity Relationship (SAR) Models for Prediction and Covariate Selection in Developmental Toxicity: Comparative Analysis of Logistic Regression and Decision Tree Models

协变量 逻辑回归 决策树 计量经济学 选择(遗传算法) 选型 统计 回归 逻辑模型树 回归分析 计算机科学 数学 机器学习
作者
Vincent C. Arena,Nancy B. Sussman,Sati Mazumdar,Shuang Yu,Orest T. Macina
出处
期刊:Sar and Qsar in Environmental Research [Informa]
卷期号:15 (1): 1-18 被引量:57
标识
DOI:10.1080/1062936032000169633
摘要

Structure–activity relationship (SAR) models can be used to predict the biological activity of potential developmental toxicants whose adverse effects include death, structural abnormalities, altered growth and functional deficiencies in the developing organism. Physico-chemical descriptors of spatial, electronic and lipophilic properties were used to derive SAR models by two modeling approaches, logistic regression and Classification and Regression Tree (CART), using a new developmental database of 293 chemicals (FDA/TERIS). Both single models and ensembles of models (termed bagging) were derived to predict toxicity. Assessment of the empirical distributions of the prediction measures was performed by repeated random partitioning of the data set. Results showed that both the decision tree and logistic regression derived developmental SAR models exhibited modest prediction accuracy. Bagging tended to enhance the prediction accuracy and reduced the variability of prediction measures compared to the single model for CART-based models but not consistently for logistic-based models. Prediction accuracy of single logistic-based models was higher than single CART-based models but bagged CART-based models were more predictive. Descriptor selection in SAR for the understanding of the developmental mechanism was highly dependent on the modeling approach. Although prediction accuracy was similar in the two modeling approaches, there was inconsistency in the model descriptors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刘恨香菜完成签到,获得积分10
1秒前
科研通AI2S应助酷炫萃采纳,获得10
1秒前
笑柳应助游云采纳,获得10
2秒前
大鱼耒水发布了新的文献求助10
3秒前
LIUC发布了新的文献求助10
3秒前
蒸馏水完成签到 ,获得积分10
3秒前
ni完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
lc发布了新的文献求助10
4秒前
zhang发布了新的文献求助10
4秒前
4秒前
章婷完成签到,获得积分20
4秒前
可爱的函函应助Anaturez采纳,获得10
5秒前
科研通AI6应助kk采纳,获得10
5秒前
6秒前
6秒前
NexusExplorer应助zzs采纳,获得50
7秒前
8秒前
liyi发布了新的文献求助10
8秒前
8秒前
江南客发布了新的文献求助10
8秒前
John完成签到,获得积分10
9秒前
10秒前
zihaolee完成签到,获得积分10
10秒前
深情安青应助kakaa采纳,获得10
10秒前
10秒前
gefan发布了新的文献求助10
11秒前
科研通AI6应助周明明采纳,获得10
11秒前
12秒前
饱满豌豆完成签到 ,获得积分20
12秒前
sensen发布了新的文献求助10
14秒前
李博士发布了新的文献求助10
14秒前
其7完成签到,获得积分10
15秒前
文俊伟发布了新的文献求助10
15秒前
淡淡的碧蓉完成签到,获得积分10
16秒前
失眠的霸完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648816
求助须知:如何正确求助?哪些是违规求助? 4776576
关于积分的说明 15045518
捐赠科研通 4807664
什么是DOI,文献DOI怎么找? 2571012
邀请新用户注册赠送积分活动 1527703
关于科研通互助平台的介绍 1486609