物理
渗透(认知心理学)
多孔介质
分形
准静态过程
接触角
凝聚态物理
多孔性
数学物理
材料科学
数学分析
热力学
数学
生物
复合材料
神经科学
作者
Marek Cieplak,Mark O. Robbins
出处
期刊:Physical review
日期:1990-06-01
卷期号:41 (16): 11508-11521
被引量:179
标识
DOI:10.1103/physrevb.41.11508
摘要
We present results of detailed simulations of capillary displacement in model two-dimensional porous media as a function of the contact angle \ensuremath{\theta} of the invading fluid. In the nonwetting limit (\ensuremath{\theta}=180\ifmmode^\circ\else\textdegree\fi{}), growth patterns are fractal as in the invasion percolation model. As \ensuremath{\theta} decreases, cooperative smoothing mechanisms involving neighboring throats become important. The typical width of invading fingers appears to diverge at a critical angle ${\mathrm{\ensuremath{\theta}}}_{\mathit{c}}$, which depends on porosity. Above ${\mathrm{\ensuremath{\theta}}}_{\mathit{c}}$ the invaded pattern remains fractal at large scales. Below ${\mathrm{\ensuremath{\theta}}}_{\mathit{c}}$ the fluid floods the system uniformly. Probabilities of local interface instabilities are analyzed to elucidate these findings.
科研通智能强力驱动
Strongly Powered by AbleSci AI