插值(计算机图形学)
线性插值
数学
分段线性函数
最近邻插值
三线性插值
卷积(计算机科学)
采样(信号处理)
多元插值
算法
数学优化
计算机科学
双线性插值
数学分析
计算机视觉
人工智能
统计
运动(物理)
滤波器(信号处理)
人工神经网络
多项式的
作者
Thierry Blu,P. Thévenaz,Michaël Unser
出处
期刊:IEEE transactions on image processing
[Institute of Electrical and Electronics Engineers]
日期:2004-04-26
卷期号:13 (5): 710-719
被引量:333
标识
DOI:10.1109/tip.2004.826093
摘要
We present a simple, original method to improve piecewise-linear interpolation with uniform knots: we shift the sampling knots by a fixed amount, while enforcing the interpolation property. We determine the theoretical optimal shift that maximizes the quality of our shifted linear interpolation. Surprisingly enough, this optimal value is nonzero and close to 1/5. We confirm our theoretical findings by performing several experiments: a cumulative rotation experiment and a zoom experiment. Both show a significant increase of the quality of the shifted method with respect to the standard one. We also observe that, in these results, we get a quality that is similar to that of the computationally more costly "high-quality" cubic convolution.
科研通智能强力驱动
Strongly Powered by AbleSci AI