Sliding mode online learning for flight control applications in unmanned aerial systems

前馈 计算机科学 人工神经网络 反向传播 控制器(灌溉) 控制工程 控制系统 自动化 前馈神经网络 滑模控制 逆动力学 控制理论(社会学) 人工智能 工程类 控制(管理) 非线性系统 物理 电气工程 生物 机械工程 经典力学 量子力学 运动学 农学
作者
Thomas Krüger,Michael Mößner,Andreas Kuhn,Joachim Axmann,Peter Vörsmann
标识
DOI:10.1109/ijcnn.2010.5596534
摘要

Implementing adaptive flight control strategies into unmanned aerial systems (UAS) contains a high potential to improve the degree of automation. This is especially the case regarding automatic operation under difficult atmospheric conditions or even system failures. A neural control strategy enables the UAS to improve its flight characteristics and to respond to unknown, non-linear flight conditions. Here, a learning flight control system for a fixed-wing UAS is realised using a systematic two-stage approach by firstly implementing a sustainable offline-trained basic knowledge and subsequently improving these characteristics during flight. Within the automated offline-step large groups of neural networks are trained with the required behaviour, which is derived from measured data. This phase shows that the necessary learning task can be achieved by multi-layered feedforward-networks. The training success of all networks is then evaluated with statistical methods and networks are selected for online application. The online learning step is realised with a control architecture comprising a neural network controller and a neural observer which predicts the system's dynamics and delivers the training signal for the contoller network. An important element of the control strategy is to determine a consistent error signal for the online training of the neural controller. This is done by backpropagation of a measured error through the inverse dynamics of the observer network. Since the inverse dynamics have to be very precise in order to train the controller adequately, a stable sliding mode control (SMC) algorithm for network training is introduced. This online adptive algorithm significantly improves the observer's charcteristics and with it the system's performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼友灵发布了新的文献求助10
刚刚
QQ发布了新的文献求助10
2秒前
hywel发布了新的文献求助10
2秒前
3秒前
ying完成签到,获得积分10
4秒前
4秒前
Dky发布了新的文献求助20
4秒前
俊逸擎苍发布了新的文献求助10
4秒前
5秒前
youth发布了新的文献求助10
5秒前
5秒前
lllllcc完成签到,获得积分10
6秒前
Akim应助彩色向秋采纳,获得10
7秒前
李健应助白河愁采纳,获得10
7秒前
与一完成签到 ,获得积分10
8秒前
现代的访曼应助哦1采纳,获得20
8秒前
大模型应助羊羊羊采纳,获得10
9秒前
niexiaoxiao完成签到,获得积分10
9秒前
10秒前
juckblack发布了新的文献求助30
10秒前
10秒前
10秒前
解语花发布了新的文献求助30
10秒前
柚子发布了新的文献求助10
11秒前
小何发布了新的文献求助10
12秒前
轻松的芯完成签到 ,获得积分10
13秒前
小满吖发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
核桃发布了新的文献求助10
15秒前
15秒前
16秒前
小蘑菇应助未闻花名采纳,获得20
18秒前
18秒前
从容的天空给从容的天空的求助进行了留言
19秒前
情怀应助柚子采纳,获得10
19秒前
小何完成签到,获得积分10
21秒前
peanut发布了新的文献求助50
21秒前
司空豁发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502597
关于积分的说明 11109039
捐赠科研通 3233376
什么是DOI,文献DOI怎么找? 1787315
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122