Sliding mode online learning for flight control applications in unmanned aerial systems

前馈 计算机科学 人工神经网络 反向传播 控制器(灌溉) 控制工程 控制系统 自动化 前馈神经网络 滑模控制 逆动力学 控制理论(社会学) 人工智能 工程类 控制(管理) 非线性系统 物理 电气工程 生物 机械工程 经典力学 量子力学 运动学 农学
作者
Thomas Krüger,Michael Mößner,Andreas Kuhn,Joachim Axmann,Peter Vörsmann
标识
DOI:10.1109/ijcnn.2010.5596534
摘要

Implementing adaptive flight control strategies into unmanned aerial systems (UAS) contains a high potential to improve the degree of automation. This is especially the case regarding automatic operation under difficult atmospheric conditions or even system failures. A neural control strategy enables the UAS to improve its flight characteristics and to respond to unknown, non-linear flight conditions. Here, a learning flight control system for a fixed-wing UAS is realised using a systematic two-stage approach by firstly implementing a sustainable offline-trained basic knowledge and subsequently improving these characteristics during flight. Within the automated offline-step large groups of neural networks are trained with the required behaviour, which is derived from measured data. This phase shows that the necessary learning task can be achieved by multi-layered feedforward-networks. The training success of all networks is then evaluated with statistical methods and networks are selected for online application. The online learning step is realised with a control architecture comprising a neural network controller and a neural observer which predicts the system's dynamics and delivers the training signal for the contoller network. An important element of the control strategy is to determine a consistent error signal for the online training of the neural controller. This is done by backpropagation of a measured error through the inverse dynamics of the observer network. Since the inverse dynamics have to be very precise in order to train the controller adequately, a stable sliding mode control (SMC) algorithm for network training is introduced. This online adptive algorithm significantly improves the observer's charcteristics and with it the system's performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华华发布了新的文献求助10
刚刚
tangjun发布了新的文献求助10
刚刚
刚刚
一一一发布了新的文献求助10
刚刚
不知名网友完成签到,获得积分10
1秒前
L.C.完成签到,获得积分10
1秒前
1秒前
眰恦完成签到 ,获得积分10
1秒前
2秒前
2秒前
黄金天下发布了新的文献求助10
3秒前
七斤文发布了新的文献求助10
4秒前
L123发布了新的文献求助10
4秒前
玛茵糖发布了新的文献求助20
6秒前
英俊的铭应助星星子采纳,获得10
7秒前
充电宝应助华华采纳,获得10
7秒前
7秒前
隐形半烟完成签到,获得积分10
8秒前
阿绿发布了新的文献求助10
9秒前
11秒前
科目三应助闻老头菊花碳采纳,获得10
12秒前
夏枯草发布了新的文献求助10
12秒前
L123完成签到,获得积分20
13秒前
魏蒙完成签到,获得积分20
13秒前
bkagyin应助塵亦采纳,获得10
13秒前
无花果应助隐形半烟采纳,获得10
13秒前
袁姣完成签到,获得积分10
14秒前
蚂虾完成签到 ,获得积分10
15秒前
15秒前
小乔同学发布了新的文献求助10
17秒前
令狐凌波完成签到 ,获得积分10
17秒前
17秒前
Jana应助queer采纳,获得10
17秒前
18秒前
JamesPei应助怕孤独的盼波采纳,获得10
20秒前
无花果应助Weylai采纳,获得10
21秒前
21秒前
Stone发布了新的文献求助30
22秒前
孙小雨发布了新的文献求助10
22秒前
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455164
求助须知:如何正确求助?哪些是违规求助? 3050441
关于积分的说明 9021374
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502413
科研通“疑难数据库(出版商)”最低求助积分说明 694501
邀请新用户注册赠送积分活动 693293