亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel dynamic bayesian network‐based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis

根本原因分析 鉴定(生物学) 贝叶斯网络 根本原因 计算机科学 故障树分析 过程(计算) 推论 断层(地质) 数据挖掘 贝叶斯推理 条件概率 传递熵 不确定性传播 贝叶斯概率 故障检测与隔离 人工智能 机器学习 工程类 算法 统计 可靠性工程 最大熵原理 数学 地质学 植物 执行机构 地震学 生物 操作系统
作者
Jie Yu,Mudassir Rashid
出处
期刊:Aiche Journal [Wiley]
卷期号:59 (7): 2348-2365 被引量:119
标识
DOI:10.1002/aic.14013
摘要

A novel networked process monitoring, fault propagation identification, and root cause diagnosis approach is developed in this study. First, process network structure is determined from prior process knowledge and analysis. The network model parameters including the conditional probability density functions of different nodes are then estimated from process operating data to characterize the causal relationships among the monitored variables. Subsequently, the Bayesian inference‐based abnormality likelihood index is proposed to detect abnormal events in chemical processes. After the process fault is detected, the novel dynamic Bayesian probability and contribution indices are further developed from the transitional probabilities of monitored variables to identify the major faulty effect variables with significant upsets. With the dynamic Bayesian contribution index, the statistical inference rules are, thus, designed to search for the fault propagation pathways from the downstream backwards to the upstream process. In this way, the ending nodes in the identified propagation pathways can be captured as the root cause variables of process faults. Meanwhile, the identified fault propagation sequence provides an in‐depth understanding as to the interactive effects of faults throughout the processes. The proposed approach is demonstrated using the illustrative continuous stirred tank reactor system and the Tennessee Eastman chemical process with the fault propagation identification results compared against those of the transfer entropy‐based monitoring method. The results show that the novel networked process monitoring and diagnosis approach can accurately detect abnormal events, identify the fault propagation pathways, and diagnose the root cause variables. © 2013 American Institute of Chemical Engineers AIChE J , 59: 2348–2365, 2013

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
UPUP0707完成签到,获得积分10
6秒前
27秒前
wanci应助风华正茂采纳,获得30
46秒前
风华正茂完成签到,获得积分10
1分钟前
1分钟前
风华正茂发布了新的文献求助10
1分钟前
blenx完成签到,获得积分10
1分钟前
olekravchenko发布了新的文献求助10
1分钟前
1分钟前
1分钟前
朱羊羊发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
佳宝(不可以喝但能吃完成签到,获得积分10
2分钟前
2分钟前
2分钟前
记ds发布了新的文献求助10
2分钟前
卷卷卷儿完成签到 ,获得积分10
2分钟前
科研通AI6应助han采纳,获得10
3分钟前
黑摄会阿Fay完成签到,获得积分10
3分钟前
活泼的鼠标完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
凸凸完成签到 ,获得积分10
3分钟前
顾矜应助风华正茂采纳,获得10
3分钟前
3分钟前
3分钟前
慕青应助文章多多采纳,获得10
3分钟前
David发布了新的文献求助10
3分钟前
3分钟前
凸凸发布了新的文献求助10
3分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
英姑应助科研通管家采纳,获得10
4分钟前
4分钟前
英俊的铭应助朱羊羊采纳,获得10
4分钟前
han发布了新的文献求助10
4分钟前
4分钟前
DD完成签到 ,获得积分10
4分钟前
希望天下0贩的0应助Re采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639664
求助须知:如何正确求助?哪些是违规求助? 4749580
关于积分的说明 15007025
捐赠科研通 4797830
什么是DOI,文献DOI怎么找? 2563907
邀请新用户注册赠送积分活动 1522813
关于科研通互助平台的介绍 1482510