A novel dynamic bayesian network‐based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis

根本原因分析 鉴定(生物学) 贝叶斯网络 根本原因 计算机科学 故障树分析 过程(计算) 推论 断层(地质) 数据挖掘 贝叶斯推理 条件概率 传递熵 不确定性传播 贝叶斯概率 故障检测与隔离 人工智能 机器学习 工程类 算法 统计 可靠性工程 最大熵原理 数学 地质学 植物 执行机构 地震学 生物 操作系统
作者
Jie Yu,Mudassir Rashid
出处
期刊:Aiche Journal [Wiley]
卷期号:59 (7): 2348-2365 被引量:119
标识
DOI:10.1002/aic.14013
摘要

A novel networked process monitoring, fault propagation identification, and root cause diagnosis approach is developed in this study. First, process network structure is determined from prior process knowledge and analysis. The network model parameters including the conditional probability density functions of different nodes are then estimated from process operating data to characterize the causal relationships among the monitored variables. Subsequently, the Bayesian inference‐based abnormality likelihood index is proposed to detect abnormal events in chemical processes. After the process fault is detected, the novel dynamic Bayesian probability and contribution indices are further developed from the transitional probabilities of monitored variables to identify the major faulty effect variables with significant upsets. With the dynamic Bayesian contribution index, the statistical inference rules are, thus, designed to search for the fault propagation pathways from the downstream backwards to the upstream process. In this way, the ending nodes in the identified propagation pathways can be captured as the root cause variables of process faults. Meanwhile, the identified fault propagation sequence provides an in‐depth understanding as to the interactive effects of faults throughout the processes. The proposed approach is demonstrated using the illustrative continuous stirred tank reactor system and the Tennessee Eastman chemical process with the fault propagation identification results compared against those of the transfer entropy‐based monitoring method. The results show that the novel networked process monitoring and diagnosis approach can accurately detect abnormal events, identify the fault propagation pathways, and diagnose the root cause variables. © 2013 American Institute of Chemical Engineers AIChE J , 59: 2348–2365, 2013
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助Liu采纳,获得10
1秒前
李爱国应助脆弱的仙人掌采纳,获得10
2秒前
打打应助张自信采纳,获得10
2秒前
2秒前
虚幻羊发布了新的文献求助10
3秒前
沙拉发布了新的文献求助10
3秒前
iNk应助陈淑玲采纳,获得10
3秒前
科研通AI2S应助BWZ采纳,获得10
3秒前
3秒前
4秒前
Ade完成签到,获得积分10
5秒前
5秒前
lx840518发布了新的文献求助10
5秒前
兴奋大开完成签到,获得积分10
6秒前
虚幻羊完成签到,获得积分20
6秒前
Meng完成签到,获得积分10
7秒前
张掖完成签到,获得积分10
7秒前
Lucas应助kangkang采纳,获得10
8秒前
大晨完成签到,获得积分10
8秒前
哈哈哈haha发布了新的文献求助20
9秒前
cc发布了新的文献求助10
9秒前
Yolo发布了新的文献求助10
9秒前
9秒前
allenice完成签到,获得积分10
9秒前
10秒前
10秒前
音乐发布了新的文献求助10
10秒前
英姑应助科研通管家采纳,获得10
11秒前
华仔应助沙拉采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
Owen应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得30
12秒前
FashionBoy应助科研通管家采纳,获得30
12秒前
Orange应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762