噬菌体
分子生物学
噬菌体展示
生物
表达式向量
免疫球蛋白轻链
免疫球蛋白重链
抗体
基因
大肠杆菌
重组DNA
噬菌体
遗传学
作者
Devin B. Tesar,Isidro Hötzel
出处
期刊:Protein Engineering Design & Selection
[Oxford University Press]
日期:2013-09-24
卷期号:26 (10): 655-662
被引量:12
标识
DOI:10.1093/protein/gzt050
摘要
A significant bottleneck in antibody discovery by phage display is the transfer of immunoglobulin variable regions from phage clones to vectors that express immunoglobulin G (IgG) in mammalian cells for screening. Here, we describe a novel phagemid vector for Fab phage display that allows expression of native IgG in mammalian cells without sub-cloning. The vector uses an optimized mammalian signal sequence that drives robust expression of Fab fragments fused to an M13 phage coat protein in Escherichia coli and IgG expression in mammalian cells. To allow the expression of Fab fragments fused to a phage coat protein in E.coli and full-length IgG in mammalian cells from the same vector without sub-cloning, the sequence encoding the phage coat protein was embedded in an optimized synthetic intron within the immunoglobulin heavy chain gene. This intron is removed from transcripts in mammalian cells by RNA splicing. Using this vector, we constructed a synthetic Fab phage display library with diversity in the heavy chain only and selected for clones binding different antigens. Co-transfection of mammalian cells with DNA from individual phage clones and a plasmid expressing the invariant light chain resulted in the expression of native IgG that was used to assay affinity, ligand blocking activity and specificity.
科研通智能强力驱动
Strongly Powered by AbleSci AI