Comparison of stepwise covariate model building strategies in population pharmacokinetic-pharmacodynamic analysis

协变量 非金属 逐步回归 统计 人口 选型 回归分析 回归 计量经济学 数学 选择(遗传算法) 计算机科学 医学 人工智能 环境卫生
作者
Ulrika Wählby,E. Niclas Jonsson,Mats O. Karlsson
出处
期刊:Aaps Pharmsci [American Association of Pharmaceutical Scientists]
卷期号:4 (4): 68-79 被引量:210
标识
DOI:10.1208/ps040427
摘要

The aim of this study was to compare 2 stepwise covariate model-building strategies, frequently used in the analysis of pharmacokinetic-pharmacodynamic (PK-PD) data using nonlinear mixed-effects models, with respect to included covariates and predictive performance. In addition, the effects of stepwise regression on the estimated covariate coefficients wise regression on the estimated covariate coefficients were assessed. Using simulated and real PK data, covariate models were built applying (1) stepwise generalized additive models (GAM) for identifying potential covariates, followed by backward elimination in the computer program NONMEM, and (2) stepwise forward inclusion and backward elimination in NONMEM. Different versions of these procedures were tried (eg, treating different study occasions as separate individuals in the GAM, or fixing a part of the parameters when the NONMEM procedure was used). The final covariate models were compared, including their ability to predict a separate data set or their performance in cross-validation. The bias in the estimated coefficients (selection bias) was assessed. The model-building procedures performed similarly in the data sets explored. No major differences in the resulting covariate models were seen, and the predictive performances overlapped. Therefore, the choice of model-building procedure in these examples could be based on other aspects such as analyst-and computer-time efficiency. There was a tendency to selection bias in the estimates, although this was small relative to the overall variability in the estimates. The predictive performances of the stepwise models were also reasonably good. Thus, selection bias seems to be a minor problem in this typical PK covariate analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lee发布了新的文献求助10
1秒前
3秒前
4秒前
gcy完成签到,获得积分10
4秒前
5秒前
一帆锋顺完成签到,获得积分10
5秒前
8秒前
8秒前
未解的波发布了新的文献求助10
9秒前
9秒前
orixero应助欧文文采纳,获得50
9秒前
九日发布了新的文献求助10
10秒前
10秒前
10秒前
liujinjin完成签到,获得积分20
11秒前
HMONEY应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得50
11秒前
11秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得30
12秒前
赘婿应助科研通管家采纳,获得30
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
Atan完成签到,获得积分10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
alan完成签到,获得积分10
12秒前
搜集达人应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
鲲之灵应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
SCINEXUS应助科研通管家采纳,获得20
13秒前
13秒前
curtisness应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3113000
求助须知:如何正确求助?哪些是违规求助? 2763371
关于积分的说明 7674142
捐赠科研通 2418596
什么是DOI,文献DOI怎么找? 1283823
科研通“疑难数据库(出版商)”最低求助积分说明 619461
版权声明 599605