Global near Infrared Models to Predict Lignin and Cellulose Content of Pine Wood

木质素 辐射松 纤维素 校准 温带气候 辐射 松属 决定系数 环境科学 植物 数学 化学 生物 统计 维格纳 有机化学
作者
Gary R. Hodge,William C. Woodbridge
出处
期刊:Journal of Near Infrared Spectroscopy [SAGE]
卷期号:18 (6): 367-380 被引量:33
标识
DOI:10.1255/jnirs.902
摘要

Global near infrared models to predict lignin and cellulose content of pine wood were developed using 517 samples for lignin and 457 samples for cellulose. Samples came from seven different pine species, including tropical species ( Pinus caribaea, P. oocarpa, P. maximinoi, P. patula and P. tecunumanii) and temperate species ( P. radiata and P. taeda) from five different countries (Brazil, Colombia, Chile, South Africa and the USA). The global models were tested on an independent validation data set and had excellent fits for lignin [correlation coefficient ( r 2 )=0.97 and standard error of prediciton ( SEP) = 0.44] and good fits for cellulose ( r 2 = 0.82 and SEP = 1.08). Subsets of the data were used to develop smaller multi-species, multi-site calibrations that could be tested on independent datasets containing different species not included in the calibration model. For calibrations based on four or more species, predictions from those models on independent datasets were generally good, with only slight degradation in r 2 and SEP relative to the calibration R 2 and SECV. The results suggest that global calibrations could be valuable in tree breeding programmes to rank species and genotypes for lignin and cellulose content. Species-specific models were developed for two species ( P. tecunumanii and P. taeda) which had sufficient numbers of observations; the global calibrations gave predictions as good as the species-specific calibrations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
飘逸的天佑完成签到 ,获得积分10
2秒前
4秒前
z2发布了新的文献求助10
6秒前
ccc完成签到,获得积分10
7秒前
sgkyy完成签到,获得积分10
7秒前
9秒前
edsenone发布了新的文献求助10
9秒前
9秒前
李爱国应助tthhhsss采纳,获得10
9秒前
9秒前
邵裘发布了新的文献求助20
12秒前
lucky发布了新的文献求助10
12秒前
丁元英完成签到,获得积分10
12秒前
南沁完成签到,获得积分10
13秒前
13秒前
JFP发布了新的文献求助10
14秒前
wodeqiche2007发布了新的文献求助10
15秒前
SciGPT应助咸鱼王的挣扎采纳,获得30
16秒前
陆aa发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
mylRalph完成签到,获得积分10
20秒前
爆米花应助渣155136采纳,获得10
20秒前
JamesPei应助酷酷的采珊采纳,获得10
22秒前
22秒前
独行侠完成签到,获得积分20
22秒前
22秒前
eric给苏苏的求助进行了留言
22秒前
泽成发布了新的文献求助10
23秒前
23秒前
科研通AI5应助刻苦鞅采纳,获得10
24秒前
24秒前
wanci应助mylRalph采纳,获得10
25秒前
氵酉发布了新的文献求助200
26秒前
27秒前
Orange应助123采纳,获得10
28秒前
hihi完成签到,获得积分10
28秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516074
求助须知:如何正确求助?哪些是违规求助? 3098285
关于积分的说明 9238941
捐赠科研通 2793282
什么是DOI,文献DOI怎么找? 1532950
邀请新用户注册赠送积分活动 712472
科研通“疑难数据库(出版商)”最低求助积分说明 707302