亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis

反向电渗析 渗透力 缓压渗透 海水淡化 正渗透 化学 盐度 卤水 功率密度 渗透 电渗析 渗透 反渗透 浓差极化 渗透压 化学工程 环境工程 环境科学 热力学 功率(物理) 有机化学 生态学 生物化学 物理 生物 工程类
作者
Ngai Yin Yip,Menachem Elimelech
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:48 (18): 11002-11012 被引量:196
标识
DOI:10.1021/es5029316
摘要

Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural → anthropogenic → engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让的思枫完成签到,获得积分10
36秒前
万金油完成签到 ,获得积分10
1分钟前
小马甲应助少喝水呀采纳,获得10
1分钟前
2分钟前
少喝水呀发布了新的文献求助10
2分钟前
cy0824发布了新的文献求助30
3分钟前
少喝水呀完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Malmever发布了新的文献求助10
3分钟前
希勤发布了新的文献求助10
4分钟前
Mipe发布了新的文献求助200
4分钟前
华仔应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助cy0824采纳,获得30
4分钟前
冬去春来完成签到 ,获得积分10
4分钟前
5分钟前
晗晗完成签到 ,获得积分10
5分钟前
子卿完成签到,获得积分0
5分钟前
6分钟前
6分钟前
英俊的铭应助端庄的饼干采纳,获得10
6分钟前
DrCuiTianjin完成签到 ,获得积分10
7分钟前
科研通AI2S应助cy0824采纳,获得30
7分钟前
vassallo完成签到 ,获得积分10
7分钟前
微笑语柳完成签到,获得积分10
7分钟前
zai完成签到 ,获得积分10
8分钟前
边曦完成签到 ,获得积分10
9分钟前
二指弹完成签到 ,获得积分10
9分钟前
9分钟前
tsn发布了新的文献求助10
9分钟前
Yam完成签到,获得积分10
11分钟前
11分钟前
tsn发布了新的文献求助10
11分钟前
11分钟前
tsn发布了新的文献求助10
11分钟前
悦耳十三发布了新的文献求助10
13分钟前
小蘑菇应助悦耳十三采纳,获得10
13分钟前
14分钟前
悦耳十三发布了新的文献求助10
14分钟前
星辰大海应助科研通管家采纳,获得30
16分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133970
求助须知:如何正确求助?哪些是违规求助? 2784836
关于积分的说明 7768703
捐赠科研通 2440205
什么是DOI,文献DOI怎么找? 1297295
科研通“疑难数据库(出版商)”最低求助积分说明 624920
版权声明 600792