Attribute Sampling: A Belief-Function Approach to Statistical Audit Evidence

样品(材料) 样本量测定 统计 区间(图论) 数学 采样(信号处理) 功能(生物学) 计量经济学 人口 置信区间 计算机科学 人口学 组合数学 社会学 滤波器(信号处理) 生物 化学 进化生物学 色谱法 计算机视觉
作者
Peter R. Gillett,Rajendra P. Srivastava
出处
期刊:Auditing-a Journal of Practice & Theory [American Accounting Association]
卷期号:19 (1): 145-155 被引量:14
标识
DOI:10.2308/aud.2000.19.1.145
摘要

The Dempster-Shafer belief function framework has been used to model the aggregation of audit evidence based on subjectively assessed beliefs. This paper shows how statistical evidence obtained by means of attribute sampling may be represented as belief functions, so that it can be incorporated into such models. In particular, the article shows: (1) how to determine the sample size in attribute sampling to obtain a desired level of belief that the true attribute occurrence rate of the population lies in a given interval; (2) what level of belief is obtained for a specified interval, given the sample result. As intuitively expected, we find that the sample size increases as the desired level of belief in the interval increases. In evaluating the sample results, our findings are again intuitively appealing. For example, provided the sample occurrence rate falls in the interval B for a given number of occurrences of the attribute, we find that the belief in B, Bel(B), increases as the sample size increases. However, if the sample occurrence rate falls outside of the interval, then Bel(B) is zero. Note that, in general, both Bel(B) and Bel(notB) are zero when the sample occurrence rate falls at the end points of the interval. These results extend similar results already available for variables sampling. However, the auditor faces an additional problem for attribute sampling: how to convert belief in an interval for control exceptions into belief in an interval for material misstatements in the financial statements, so that it can be combined with evidence from other sources in implementations of the Audit Risk Model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助real采纳,获得10
1秒前
消消乐发布了新的文献求助30
3秒前
李家新29完成签到,获得积分10
3秒前
科研通AI2S应助乐正成危采纳,获得30
4秒前
动次打次应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得30
7秒前
科目三应助科研通管家采纳,获得30
7秒前
cocolu应助科研通管家采纳,获得10
7秒前
wen应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
丰知然应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
瑾玉完成签到,获得积分10
9秒前
yaya发布了新的文献求助10
9秒前
10秒前
领导范儿应助吉吉国王采纳,获得10
12秒前
14秒前
清秀的吐司完成签到 ,获得积分10
15秒前
星辰大海应助迅速灵竹采纳,获得10
16秒前
ZME发布了新的文献求助10
16秒前
yao关注了科研通微信公众号
16秒前
llzzyy发布了新的文献求助10
18秒前
19秒前
NANANA完成签到,获得积分10
20秒前
安在哉完成签到,获得积分10
21秒前
yaya完成签到,获得积分10
23秒前
25秒前
26秒前
HMZ完成签到,获得积分10
30秒前
迅速灵竹发布了新的文献求助10
31秒前
32秒前
汉堡包应助小萌采纳,获得10
34秒前
张怡博完成签到 ,获得积分10
34秒前
35秒前
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505840
捐赠科研通 2616702
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648967