马尔可夫链
数学
吉布斯抽样
数学优化
方差减少
马尔科夫蒙特卡洛
马尔可夫链的例子
趋同(经济学)
马尔可夫链混合时间
变阶马尔可夫模型
状态空间
马尔可夫模型
大都会-黑斯廷斯算法
算法
差异(会计)
统计
贝叶斯概率
蒙特卡罗方法
经济
业务
会计
经济增长
标识
DOI:10.1214/aos/1176325750
摘要
Several Markov chain methods are available for sampling from a posterior distribution. Two important examples are the Gibbs sampler and the Metropolis algorithm. In addition, several strategies are available for constructing hybrid algorithms. This paper outlines some of the basic methods and strategies and discusses some related theoretical and practical issues. On the theoretical side, results from the theory of general state space Markov chains can be used to obtain convergence rates, laws of large numbers and central limit theorems for estimates obtained from Markov chain methods. These theoretical results can be used to guide the construction of more efficient algorithms. For the practical use of Markov chain methods, standard simulation methodology provides several variance reduction techniques and also give guidance on the choice of sample size and allocation.
科研通智能强力驱动
Strongly Powered by AbleSci AI