内体
溶酶体
6-磷酸甘露糖
甘露糖6-磷酸受体
高尔基体
细胞生物学
内质网
生物化学
受体
生物
激活剂(遗传学)
甘露糖
内质网相关蛋白降解
化学
酶
未折叠蛋白反应
生长因子
作者
Maria Francisca Coutinho,Maria João Prata,Sandra Alves
标识
DOI:10.1016/j.ymgme.2012.07.012
摘要
Lysosomal hydrolases have long been known to be responsible for the degradation of different substrates in the cell. These acid hydrolases are synthesized in the rough endoplasmic reticulum and transported through the Golgi apparatus to the trans-Golgi network (TGN). From there, they are delivered to endosomal/lysosomal compartments, where they finally become active due to the acidic pH characteristic of the lysosomal compartment. The majority of the enzymes leave the TGN after modification with mannose-6-phosphate (M6P) residues, which are specifically recognized by M6P receptors (MPRs), ensuring their transport to the endosomal/lysosomal system. Although M6P receptors play a major role in the intracellular transport of newly synthesized lysosomal enzymes in mammalian cells, several lines of evidence suggest the existence of alternative processes of lysosomal targeting. Among them, the two that are mediated by the M6P alternative receptors, lysosomal integral membrane protein (LIMP-2) and sortilin, have gained unequivocal support. LIMP-2 was shown to be implicated in the delivery of beta-glucocerebrosidase (GCase) to the lysosomes, whereas sortilin has been suggested to be a multifunctional receptor capable of binding several different ligands, including neurotensin and receptor-associated protein (RAP), and of targeting several proteins to the lysosome, including sphingolipid activator proteins (prosaposin and GM2 activator protein), acid sphingomyelinase and cathepsins D and H. Here, we review the current knowledge on these two proteins: their discovery, study, structural features and cellular function, with special attention to their role as alternative receptors to lysosomal trafficking. Recent studies associating both LIMP2 and sortilin to disease are also extensively reviewed.
科研通智能强力驱动
Strongly Powered by AbleSci AI