The Mantel Test versus Pearson's Correlation Analysis: Assessment of the Differences for Biological and Environmental Studies

壁炉试验 统计 相关性 皮尔逊积矩相关系数 考试(生物学) 计量经济学 数学 医学 环境卫生 生物 生态学 几何学 遗传多样性 人口
作者
Pierre Dutilleul,Jason D. Stockwell,Dominic Frigon,Pierre Legendre
出处
期刊:Journal of Agricultural Biological and Environmental Statistics [Springer Nature]
卷期号:5 (2): 131-131 被引量:138
标识
DOI:10.2307/1400528
摘要

The space-time clustering procedure of Mantel was originally designed to relate a matrix of spatial distance measures and a matrix of temporal distance measures in a generalized regression approach. The procedure, known as the Mantel test in the biological and environmental sciences, includes any analysis relating two distance matrices or, more generally, two proximity matrices. In this paper, we discuss the extent to which a Mantel type of analysis between two proximity matrices agrees with Pearson's correlation analysis when both methods are applicable (i.e., the raw data used to calculate proximities are available). First, we demonstrate that the Mantel test and Pearson's correlation analysis should lead to a similar decision regarding their respective null hypothesis when squared Euclidean distances are used in the Mantel test and the raw bivariate data are normally distributed. Then we use fish and zooplankton biomass data from Lake Erie (North American Great Lakes) to show that Pearson's correlation statistic may be nonsignificant while the Mantel statistic calculated on nonsquared Euclidean distances is significant. After small-size artificial examples, seven bivariate distributional models are tried to simulate data reproducing the difference between analyses, among which three do reproduce it. These results and some extensions are discussed. In conclusion, particular attention must be paid whenever relations established between proximities are backtransposed to raw data, especially when these may display patterns described in the body of this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子完成签到,获得积分10
1秒前
圆彰七大发布了新的文献求助10
2秒前
2秒前
眼里还有光完成签到,获得积分10
3秒前
3秒前
jie完成签到,获得积分20
3秒前
WANG完成签到,获得积分10
4秒前
4秒前
leinuo077完成签到,获得积分10
4秒前
7秒前
8秒前
ciooli完成签到,获得积分20
8秒前
林一存完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
能能发布了新的文献求助10
10秒前
英俊的鱼完成签到,获得积分10
11秒前
Jasper应助小猪啵比采纳,获得10
11秒前
谦让月饼完成签到 ,获得积分10
11秒前
12秒前
12秒前
科研小白完成签到,获得积分10
12秒前
12秒前
moonn完成签到,获得积分10
13秒前
DYF发布了新的文献求助10
14秒前
14秒前
jie关注了科研通微信公众号
14秒前
15秒前
15秒前
无尽夏完成签到,获得积分10
15秒前
白昼の月完成签到 ,获得积分0
15秒前
科研通AI2S应助Hbobo采纳,获得10
16秒前
NexusExplorer应助tier3采纳,获得10
16秒前
bluesmile完成签到,获得积分10
17秒前
好困应助Riggle G采纳,获得10
17秒前
小羊关注了科研通微信公众号
17秒前
17秒前
FreeRice发布了新的文献求助10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148222
求助须知:如何正确求助?哪些是违规求助? 2799394
关于积分的说明 7834549
捐赠科研通 2456604
什么是DOI,文献DOI怎么找? 1307321
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655