物理
系列(地层学)
操作员(生物学)
数学物理
波函数
能量(信号处理)
功能(生物学)
极限(数学)
量子力学
对称(几何)
期限(时间)
光谱(功能分析)
边值问题
学位(音乐)
数学
数学分析
转录因子
生物
基因
生物化学
声学
进化生物学
古生物学
抑制因子
化学
几何学
出处
期刊:Physical Review
[American Physical Society]
日期:1930-09-01
卷期号:36 (5): 878-892
被引量:419
标识
DOI:10.1103/physrev.36.878
摘要
It is shown that if $H$ is the negative energy operator, and $\ensuremath{\varphi}$ any function satisfying the boundary conditions of quantum dynamics and possessing the symmetry properties characteristic of a given spectral series, then $E=\ensuremath{\int}{\ensuremath{\varphi}}^{*}H\ensuremath{\varphi}d\ensuremath{\tau}$ is a lower limit to the term-value of the lowest level of that series. If the integral is evaluated for various $\ensuremath{\varphi}$, the largest value obtained will be the best approximation to this term value. The method is applied to various electronic configurations with satisfactory results. The degree to which $\ensuremath{\varphi}$ approximates the wave function of the state is not determined, but it is shown to be likely that the approximation is not good at large distances from the nucleus.
科研通智能强力驱动
Strongly Powered by AbleSci AI