Spectral-Spatial Constraint Hyperspectral Image Classification

高光谱成像 像素 模式识别(心理学) 人工智能 特征(语言学) 计算机科学 空间分析 特征向量 约束(计算机辅助设计) 图像(数学) 数学 计算机视觉 统计 几何学 语言学 哲学
作者
Rongrong Ji,Yue Gao,Richang Hong,Qiong Liu,Dacheng Tao,Xuelong Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:52 (3): 1811-1824 被引量:208
标识
DOI:10.1109/tgrs.2013.2255297
摘要

Hyperspectral image classification has attracted extensive research efforts in the recent decade. The main difficulty lies in the few labeled samples versus the high dimensional features. To this end, it is a fundamental step to explore the relationship among different pixels in hyperspectral image classification, toward jointly handing both the lack of label and high dimensionality problems. In the hyperspectral images, the classification task can be benefited from the spatial layout information. In this paper, we propose a hyperspectral image classification method to address both the pixel spectral and spatial constraints, in which the relationship among pixels is formulated in a hypergraph structure. In the constructed hypergraph, each vertex denotes a pixel in the hyperspectral image. And the hyperedges are constructed from both the distance between pixels in the feature space and the spatial locations of pixels. More specifically, a feature-based hyperedge is generated by using distance among pixels, where each pixel is connected with its K nearest neighbors in the feature space. Second, a spatial-based hyperedge is generated to model the layout among pixels by linking where each pixel is linked with its spatial local neighbors. Both the learning on the combinational hypergraph is conducted by jointly investigating the image feature and the spatial layout of pixels to seek their joint optimal partitions. Experiments on four data sets are performed to evaluate the effectiveness and and efficiency of the proposed method. Comparisons to the state-of-the-art methods demonstrate the superiority of the proposed method in the hyperspectral image classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虾仁猪心完成签到,获得积分10
刚刚
缘君完成签到,获得积分10
刚刚
刚刚
大模型应助微弱de胖头采纳,获得10
刚刚
kkk关闭了kkk文献求助
1秒前
善学以致用应助GG采纳,获得10
1秒前
1秒前
xhj666完成签到,获得积分10
4秒前
修辛完成签到 ,获得积分10
4秒前
壮观的黄豆完成签到 ,获得积分10
4秒前
meimei发布了新的文献求助10
4秒前
4秒前
Barton完成签到,获得积分10
4秒前
花卷完成签到,获得积分20
5秒前
小蘑菇应助虾仁猪心采纳,获得10
5秒前
5秒前
林夕凡完成签到,获得积分10
6秒前
6秒前
yx_cheng应助seayoa采纳,获得20
7秒前
7秒前
7秒前
上官若男应助最爱吃火锅采纳,获得10
7秒前
Anar发布了新的文献求助10
8秒前
着急的语海完成签到,获得积分10
9秒前
9秒前
共享精神应助Wiesen采纳,获得10
9秒前
10秒前
林夕凡发布了新的文献求助10
10秒前
风魂剑主完成签到,获得积分10
10秒前
jery完成签到,获得积分10
10秒前
lingjing完成签到,获得积分10
11秒前
SHY发布了新的文献求助10
11秒前
新小pi发布了新的文献求助10
12秒前
上官若男应助懒顾采纳,获得10
12秒前
13秒前
13秒前
玩命的忆彤关注了科研通微信公众号
13秒前
搜集达人应助siyan156采纳,获得10
13秒前
Jasper应助傲娇的烤鸡采纳,获得10
13秒前
英俊的铭应助meimei采纳,获得10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011574
求助须知:如何正确求助?哪些是违规求助? 3551304
关于积分的说明 11308331
捐赠科研通 3285566
什么是DOI,文献DOI怎么找? 1811101
邀请新用户注册赠送积分活动 886780
科研通“疑难数据库(出版商)”最低求助积分说明 811638