Trajectory analysis of land cover change in arid environment of China

变更检测 土地覆盖 遥感 干旱 植被(病理学) 环境变化 弹道 比例(比率) 环境科学 卫星图像 自然地理学 土地利用 时间分辨率 地理 地图学 气候变化 地质学 生态学 海洋学 物理 病理 生物 古生物学 医学 量子力学 天文
作者
Qiming Zhou,Bo Li,Alishir Kurban
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:29 (4): 1093-1107 被引量:130
标识
DOI:10.1080/01431160701355256
摘要

Abstract Remotely sensed data have been utilized for environmental change study over the past 30 years. Large collections of remote sensing imagery have made it possible for spatio‐temporal analyses of the environment and the impact of human activities. This research attempts to develop both conceptual framework and methodological implementation for land cover change detection based on medium and high spatial resolution imagery and temporal trajectory analysis. Multi‐temporal and multi‐scale remotely sensed data have been integrated from various sources with a monitoring time frame of 30 years, including historical and state‐of‐the‐art high‐resolution satellite imagery. Based on this, spatio‐temporal patterns of environmental change, which is largely represented by changes in land cover (e.g., vegetation and water), were analysed for the given timeframe. Multi‐scale and multi‐temporal remotely sensed data, including Landsat MSS, TM, ETM and SPOT HRV, were used to detect changes in land cover in the past 30 years in Tarim River, Xinjiang, China. The study shows that by using the auto‐classification approach an overall accuracy of 85–90% with a Kappa coefficient of 0.66–0.78 was achieved for the classification of individual images. The temporal trajectory of land‐use change was established and its spatial pattern was analysed to gain a better understanding of the human impact on the fragile ecosystem of China's arid environment. Acknowledgements This research was supported by National Key Basic Research and Development Program (2006CB701304), Research Grants Council Competitive Earmarked Research Grant (HKBU 2026/04P), and Hong Kong Baptist University Faculty Research Grant (FRG/03‐04/II‐66). The authors would like to thank the staff of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences for their support during the fieldwork.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婷婷发布了新的文献求助10
刚刚
zzt完成签到,获得积分10
2秒前
张小汉发布了新的文献求助30
3秒前
二十四发布了新的文献求助10
3秒前
赘婿应助junzilan采纳,获得10
3秒前
FashionBoy应助勤恳的雨文采纳,获得10
3秒前
aaa完成签到,获得积分10
4秒前
5秒前
11111完成签到,获得积分20
6秒前
仔wang完成签到,获得积分10
6秒前
8秒前
忘羡222发布了新的文献求助20
8秒前
8秒前
温暖涫完成签到,获得积分10
10秒前
11111发布了新的文献求助10
10秒前
健忘的牛排完成签到,获得积分10
11秒前
wmmm完成签到,获得积分10
11秒前
Akim应助爱吃泡芙采纳,获得10
11秒前
老迟到的书雁完成签到 ,获得积分10
11秒前
11秒前
正经俠发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
学科共进完成签到,获得积分10
14秒前
百草27完成签到,获得积分10
14秒前
15秒前
16秒前
17秒前
绵马紫萁发布了新的文献求助10
17秒前
18秒前
fzhou完成签到 ,获得积分10
18秒前
尘雾发布了新的文献求助10
18秒前
19秒前
一一发布了新的文献求助20
19秒前
19秒前
Aixia完成签到 ,获得积分10
20秒前
葡萄糖完成签到,获得积分10
20秒前
哈哈完成签到,获得积分10
20秒前
在水一方应助CC采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824