Trajectory analysis of land cover change in arid environment of China

变更检测 土地覆盖 遥感 干旱 植被(病理学) 环境变化 弹道 比例(比率) 环境科学 卫星图像 自然地理学 土地利用 时间分辨率 地理 地图学 气候变化 地质学 生态学 海洋学 物理 病理 生物 古生物学 医学 量子力学 天文
作者
Qiming Zhou,Bo Li,Alishir Kurban
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:29 (4): 1093-1107 被引量:130
标识
DOI:10.1080/01431160701355256
摘要

Abstract Remotely sensed data have been utilized for environmental change study over the past 30 years. Large collections of remote sensing imagery have made it possible for spatio‐temporal analyses of the environment and the impact of human activities. This research attempts to develop both conceptual framework and methodological implementation for land cover change detection based on medium and high spatial resolution imagery and temporal trajectory analysis. Multi‐temporal and multi‐scale remotely sensed data have been integrated from various sources with a monitoring time frame of 30 years, including historical and state‐of‐the‐art high‐resolution satellite imagery. Based on this, spatio‐temporal patterns of environmental change, which is largely represented by changes in land cover (e.g., vegetation and water), were analysed for the given timeframe. Multi‐scale and multi‐temporal remotely sensed data, including Landsat MSS, TM, ETM and SPOT HRV, were used to detect changes in land cover in the past 30 years in Tarim River, Xinjiang, China. The study shows that by using the auto‐classification approach an overall accuracy of 85–90% with a Kappa coefficient of 0.66–0.78 was achieved for the classification of individual images. The temporal trajectory of land‐use change was established and its spatial pattern was analysed to gain a better understanding of the human impact on the fragile ecosystem of China's arid environment. Acknowledgements This research was supported by National Key Basic Research and Development Program (2006CB701304), Research Grants Council Competitive Earmarked Research Grant (HKBU 2026/04P), and Hong Kong Baptist University Faculty Research Grant (FRG/03‐04/II‐66). The authors would like to thank the staff of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences for their support during the fieldwork.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
柳觅夏完成签到,获得积分10
3秒前
云辞忧完成签到,获得积分10
4秒前
6秒前
xi发布了新的文献求助10
10秒前
忧虑的访梦完成签到,获得积分10
11秒前
11秒前
lanlan完成签到 ,获得积分20
12秒前
顶顶小明完成签到,获得积分10
12秒前
robi发布了新的文献求助10
14秒前
苏桑焉完成签到 ,获得积分10
15秒前
王羊补牢完成签到 ,获得积分10
17秒前
机智的曼易完成签到 ,获得积分10
18秒前
19秒前
杨秋月发布了新的文献求助10
19秒前
惑感完成签到 ,获得积分10
23秒前
哈哈哈哈哈完成签到,获得积分10
23秒前
科研通AI2S应助宇文思采纳,获得30
23秒前
able完成签到 ,获得积分10
26秒前
26秒前
30秒前
杨秋月完成签到,获得积分10
30秒前
30秒前
31秒前
完美世界应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
研友_VZG7GZ应助科研通管家采纳,获得10
32秒前
慕青应助科研通管家采纳,获得10
32秒前
32秒前
zyy6657完成签到,获得积分10
32秒前
32秒前
34秒前
35秒前
邵竺发布了新的文献求助10
36秒前
36秒前
三木完成签到 ,获得积分10
37秒前
39秒前
祺王862完成签到,获得积分10
41秒前
41秒前
长安乱世完成签到 ,获得积分10
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134935
求助须知:如何正确求助?哪些是违规求助? 2785802
关于积分的说明 7774295
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298093
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825