The Estimation of the Lorenz Curve and Gini Index

洛伦兹曲线 计量经济学 经济 索引(排版) 数学 统计 基尼系数 估计 不平等 经济不平等 计算机科学 数学分析 万维网 管理
作者
Joseph L. Gastwirth
出处
期刊:The Review of Economics and Statistics [MIT Press]
卷期号:54 (3): 306-306 被引量:1065
标识
DOI:10.2307/1937992
摘要

M OST of the measures of income inequality are derived from the Lorenz curve; indeed Morgan (1962) states that the Gini index is the best single measure of inequality. The present article reviews some of the theoretical properties of the Lorenz curve, relates them to characteristics of the frequency function underlying the income distribution and develops methods for obtaining accurate bounds on the Gini index which do not depend on curve fitting. In the process we should also like to lay to rest some myths concerning the Gini index such as: (a) its relative insensitivity (Rltet6 and Frigyes, 1968), (b) difficulty in computation (1968), and (c) problems related to the inclusion of negative incomes (Budd, 1970). The basic idea of our approach is to obtain upper and lower bounds to the Gini index from data which are grouped in intervals and the mean income in each interval is known. The usual method (Morgan, 1962) of estimating the Gini index yields a lower bound by assuming that all incomes in any interval equal the average income. We derive an upper bound to the grouping correction (Goldsmith, et al., 1954, p. 10) and hence to the Gini index by distributing the income to maximize the spread within each group. On the 1967 Internal Revenue Service tax data, the difference between our bounds is less than 0.006. As most income distributions come from a frequency function (density) which decreases in the large income range, we develop improved bounds for the Gini index based on this assumption. Fortunately, this assumption can be checked from the data so that we can use the sharper bounds only for the appropriate intervals. Using this second method the difference between our bounds is ? .002. Because Soltow (1965) detects a change in the Gini index of 0.8 of one per cent or about 0.003 or 0.004, our bound seems quite adequate. In section VI we extend our method to obtain upper and lower curves for the Lorenz curve. After reviewing the basic properties of the Lorenz curve we proceed to derive bounds on the mean difference and Gini index. In section IV we analyze an actual sample and show that the method used by the Census Bureau (1967) often leads to estimates which are outside the mathematically possible bounds we derived. Finally, in an appendix we show that the Pareto law does not give a good fit to current United States tax data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Corioreos发布了新的文献求助10
3秒前
mobai发布了新的文献求助10
4秒前
naturehome发布了新的文献求助10
4秒前
simey完成签到,获得积分10
4秒前
yyds应助aforgemon采纳,获得50
5秒前
芜衡落砂完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
7秒前
yazhang完成签到 ,获得积分10
8秒前
碧蓝的海豚完成签到,获得积分10
8秒前
难难难完成签到,获得积分10
9秒前
高兴的斑马完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
Rimbaud完成签到 ,获得积分10
12秒前
荷塘月色应助0077采纳,获得10
13秒前
小马甲应助优美紫槐采纳,获得10
13秒前
脸小呆呆发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
zhizhizhi完成签到,获得积分10
14秒前
shyunk发布了新的文献求助10
14秒前
cc完成签到,获得积分10
15秒前
16秒前
才染发布了新的文献求助10
16秒前
16秒前
pollen06发布了新的文献求助10
17秒前
Ray发布了新的文献求助10
18秒前
成就的寄凡完成签到,获得积分10
21秒前
cccccc完成签到,获得积分10
21秒前
Song完成签到,获得积分10
21秒前
orixero应助哈哈哈哈哈哈采纳,获得10
22秒前
22秒前
23秒前
23秒前
Truman发布了新的文献求助10
23秒前
Amber发布了新的文献求助10
24秒前
Corioreos完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729522
求助须知:如何正确求助?哪些是违规求助? 5319062
关于积分的说明 15316881
捐赠科研通 4876547
什么是DOI,文献DOI怎么找? 2619420
邀请新用户注册赠送积分活动 1568947
关于科研通互助平台的介绍 1525532