烧结
材料科学
晶界
粒度
晶粒生长
晶界扩散系数
陶瓷
等温过程
凝聚态物理
矿物学
冶金
复合材料
热力学
微观结构
化学
物理
作者
Xiaohui Wang,Pei‐Lin Chen,I‐Wei Chen
标识
DOI:10.1111/j.1551-2916.2005.00763.x
摘要
Isothermal and constant‐grain‐size sintering have been carried out to full density in Y 2 O 3 with and without dopants, at as low as 40% of the homologous temperature. The normalized densification rate follows Herring's scaling law with a universal geometric factor that depends only on density. The frozen grain structure, however, prevents pore relocation commonly assumed in the conventional sintering models, which fail to describe our data. Suppression of grain growth but not densification is consistent with a grain boundary network pinned by triple‐point junctions, which have a higher activation energy for migration than grain boundaries. Long transients in sintering and grain growth have provided further evidence of relaxation and threshold processes at the grain boundary/triple point.
科研通智能强力驱动
Strongly Powered by AbleSci AI