节拍(声学)
QRS波群
小波变换
人工智能
小波
模式识别(心理学)
计算机科学
探测器
平稳小波变换
灵敏度(控制系统)
连续小波变换
语音识别
多贝西小波
离散小波变换
计算机视觉
数学
工程类
物理
心脏病学
声学
电子工程
医学
电信
作者
Vignesh Kalidas,Lakshman S. Tamil
标识
DOI:10.1109/bibe.2017.00-12
摘要
In this paper, we propose an online QRS detector algorithm using Stationary Wavelet Transforms (SWT) for real time beat detection from single-lead electrocardiogram (ECG) signals. Daubechies 3 (†db3’) wavelet is chosen as the mother wavelet for SWT analysis. The information from the first ten seconds of the ECG signal is used as a learning template by the algorithm to initialize thresholds for beat detection. These thresholds are then modified every three seconds, thereby quickly adapting to changes in heart rate and signal quality. Hence false beat detections are vastly suppressed in this approach, while identifying true beats with a high degree of accuracy. Our algorithm yields a sensitivity (SE) of 99.88% and a positive predictive value (PPV) of 99.84% on the MIT-BIH Arrhythmia Database, SE of 99.80% and PPV of 99.91% on the AHA database and an SE of 99.97% and PPV of 99.90% on the QT database.
科研通智能强力驱动
Strongly Powered by AbleSci AI