Copper Electrode Fabricated via Pulse Electrodeposition: Toward High Methane Selectivity and Activity for CO2 Electroreduction

选择性 电极 材料科学 电化学 甲烷 法拉第效率 化学工程 催化作用 限制电流 电流密度 无机化学 化学 冶金 有机化学 物理化学 工程类 物理 量子力学
作者
Yanling Qiu,Hexiang Zhong,Taotao Zhang,Wenbin Xu,Xianfeng Li,Huamin Zhang
出处
期刊:ACS Catalysis 卷期号:7 (9): 6302-6310 被引量:88
标识
DOI:10.1021/acscatal.7b00571
摘要

Electrochemical reduction of CO2 (ERC) to methane has significant economic benefits and represents one promising solution for energy and environmental sustainability. However, traditional metal electrodes suffer from higher overpotentials, low activities, and poor selectivity. In this article, the pulse electrodeposition (P-ED) method is employed to prepare a copper electrode for ERC. The P-ED method can easily create Cu coatings on carbon paper with a much rougher surface and extended surface area, which is highly beneficial for improving their activity and selectivity. As a result, the prepared Cu electrodes exhibit high faradaic efficiency (of 85% at −2.8 V) and enhanced partial current density (jCH4 = 38 mA cm–2) for methane, which is by far the highest value ever reported at room temperature and ambient pressure. The enhanced activity is attributed to the extended reactive areas with rough morphology and loosened coating structure to ensure CO2 access the reaction sites located at the sublayers of the deposited Cu coatings. The prominent selectivity for CH4 is likely due to the presence of a stepped surface, which is formed by introduction of Cu (100) step into Cu (111) and Cu (220) terraces during the P-ED processes. The lower resistance to the one-electron transfer to CO2, which is a pre-equilibrium step prior to the rate-limiting nonelectrochemical step, is another positive factor to improve the ERC activity for CH4. Furthermore, we surprisingly find that the activity and selectivity of the Cu electrode can be easily recovered through continuous CO2 bubbling. This paper provides a facile method to prepare highly effective electrodes for electrochemical conversion of CO2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzt完成签到,获得积分10
1秒前
张小汉发布了新的文献求助30
2秒前
二十四发布了新的文献求助10
2秒前
赘婿应助junzilan采纳,获得10
2秒前
FashionBoy应助勤恳的雨文采纳,获得10
2秒前
aaa完成签到,获得积分10
3秒前
4秒前
11111完成签到,获得积分20
5秒前
仔wang完成签到,获得积分10
5秒前
7秒前
忘羡222发布了新的文献求助20
7秒前
7秒前
温暖涫完成签到,获得积分10
9秒前
11111发布了新的文献求助10
9秒前
健忘的牛排完成签到,获得积分10
10秒前
wmmm完成签到,获得积分10
10秒前
Akim应助爱吃泡芙采纳,获得10
10秒前
老迟到的书雁完成签到 ,获得积分10
10秒前
10秒前
正经俠发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
学科共进完成签到,获得积分10
13秒前
百草27完成签到,获得积分10
13秒前
14秒前
15秒前
16秒前
绵马紫萁发布了新的文献求助10
16秒前
17秒前
fzhou完成签到 ,获得积分10
17秒前
尘雾发布了新的文献求助10
17秒前
18秒前
一一发布了新的文献求助20
18秒前
18秒前
Aixia完成签到 ,获得积分10
19秒前
葡萄糖完成签到,获得积分10
19秒前
哈哈完成签到,获得积分10
19秒前
在水一方应助CC采纳,获得10
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824