已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

From ITDL to Place2Vec

文字2vec 计算机科学 相似性(几何) 情报检索 透视图(图形) 空格(标点符号) 主题模型 人工智能 词(群论) 数据科学 机器学习 数据挖掘 嵌入 图像(数学) 操作系统 语言学 哲学
作者
Bo Yan,Krzysztof Janowicz,Gengchen Mai,Song Gao
标识
DOI:10.1145/3139958.3140054
摘要

Understanding, representing, and reasoning about Points Of Interest (POI) types such as Auto Repair, Body Shop, Gas Stations, or Planetarium, is a key aspect of geographic information retrieval, recommender systems, geographic knowledge graphs, as well as studying urban spaces in general, e.g., for extracting functional or vague cognitive regions from user-generated content. One prerequisite to these tasks is the ability to capture the similarity and relatedness between POI types. Intuitively, a spatial search that returns body shops or even gas stations in the absence of auto repair places is still likely to satisfy some user needs while returning planetariums will not. Place hierarchies are frequently used for query expansion, but most of the existing hierarchies are relatively shallow and structured from a single perspective, thereby putting POI types that may be closely related regarding some characteristics far apart from another. This leads to the question of how to learn POI type representations from data. Models such as Word2Vec that produces word embeddings from linguistic contexts are a novel and promising approach as they come with an intuitive notion of similarity. However, the structure of geographic space, e.g., the interactions between POI types, differs substantially from linguistics. In this work, we present a novel method to augment the spatial contexts of POI types using a distance-binned, information-theoretic approach to generate embeddings. We demonstrate that our work outperforms Word2Vec and other models using three different evaluation tasks and strongly correlates with human assessments of POI type similarity. We published the resulting embeddings for 570 place types as well as a collection of human similarity assessments online for others to use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
艺葛荏殇芯完成签到 ,获得积分10
1秒前
5秒前
POLYSER发布了新的文献求助10
6秒前
123456完成签到 ,获得积分10
6秒前
薄荷蓝完成签到,获得积分10
12秒前
123a应助雨季采纳,获得10
14秒前
14秒前
虚幻寄文完成签到 ,获得积分10
14秒前
蓝白完成签到,获得积分10
17秒前
18秒前
黄飚完成签到,获得积分10
19秒前
yanxuhuan完成签到 ,获得积分10
19秒前
21秒前
24秒前
29秒前
muyang发布了新的文献求助10
29秒前
30秒前
Criminology34应助科研通管家采纳,获得10
30秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
在水一方应助科研通管家采纳,获得10
30秒前
思源应助科研通管家采纳,获得10
30秒前
30秒前
ding应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
CodeCraft应助科研通管家采纳,获得10
30秒前
小马甲应助科研通管家采纳,获得10
30秒前
张弛完成签到,获得积分10
31秒前
lustr完成签到 ,获得积分10
31秒前
33秒前
张弛发布了新的文献求助20
33秒前
默默善愁发布了新的文献求助10
34秒前
瘦瘦的百褶裙完成签到 ,获得积分10
34秒前
上官若男应助Yyyang采纳,获得10
34秒前
123a应助muyang采纳,获得10
38秒前
故城完成签到 ,获得积分10
39秒前
39秒前
sskaze完成签到 ,获得积分10
39秒前
李爱国应助默默善愁采纳,获得10
40秒前
充电宝应助meeteryu采纳,获得10
41秒前
2223发布了新的文献求助10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418110
求助须知:如何正确求助?哪些是违规求助? 4533794
关于积分的说明 14142309
捐赠科研通 4450087
什么是DOI,文献DOI怎么找? 2441088
邀请新用户注册赠送积分活动 1432850
关于科研通互助平台的介绍 1410039