From ITDL to Place2Vec

文字2vec 计算机科学 相似性(几何) 情报检索 透视图(图形) 空格(标点符号) 主题模型 人工智能 词(群论) 数据科学 机器学习 数据挖掘 嵌入 操作系统 图像(数学) 哲学 语言学
作者
Bo Yan,Krzysztof Janowicz,Gengchen Mai,Song Gao
标识
DOI:10.1145/3139958.3140054
摘要

Understanding, representing, and reasoning about Points Of Interest (POI) types such as Auto Repair, Body Shop, Gas Stations, or Planetarium, is a key aspect of geographic information retrieval, recommender systems, geographic knowledge graphs, as well as studying urban spaces in general, e.g., for extracting functional or vague cognitive regions from user-generated content. One prerequisite to these tasks is the ability to capture the similarity and relatedness between POI types. Intuitively, a spatial search that returns body shops or even gas stations in the absence of auto repair places is still likely to satisfy some user needs while returning planetariums will not. Place hierarchies are frequently used for query expansion, but most of the existing hierarchies are relatively shallow and structured from a single perspective, thereby putting POI types that may be closely related regarding some characteristics far apart from another. This leads to the question of how to learn POI type representations from data. Models such as Word2Vec that produces word embeddings from linguistic contexts are a novel and promising approach as they come with an intuitive notion of similarity. However, the structure of geographic space, e.g., the interactions between POI types, differs substantially from linguistics. In this work, we present a novel method to augment the spatial contexts of POI types using a distance-binned, information-theoretic approach to generate embeddings. We demonstrate that our work outperforms Word2Vec and other models using three different evaluation tasks and strongly correlates with human assessments of POI type similarity. We published the resulting embeddings for 570 place types as well as a collection of human similarity assessments online for others to use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzcres完成签到,获得积分10
1秒前
eeeee完成签到 ,获得积分10
1秒前
乐观德地完成签到,获得积分10
2秒前
大个应助yf_zhu采纳,获得10
2秒前
llk发布了新的文献求助10
3秒前
一只大肥猫完成签到,获得积分10
3秒前
3秒前
5秒前
5秒前
5秒前
5秒前
科研通AI5应助GGG采纳,获得10
6秒前
6秒前
8秒前
Ann发布了新的文献求助20
8秒前
8秒前
buno应助duxinyue采纳,获得10
8秒前
xlj发布了新的文献求助10
9秒前
9秒前
可爱的函函应助zhen采纳,获得10
10秒前
研友_VZG7GZ应助dingdong采纳,获得10
11秒前
11秒前
李成恩完成签到 ,获得积分10
12秒前
心碎的黄焖鸡完成签到 ,获得积分10
12秒前
琪琪扬扬发布了新的文献求助10
13秒前
14秒前
14秒前
宗磬完成签到,获得积分10
15秒前
NexusExplorer应助搞怪不言采纳,获得10
16秒前
科研通AI5应助一天八杯水采纳,获得10
17秒前
17秒前
17秒前
18秒前
大模型应助琪琪扬扬采纳,获得10
19秒前
丘比特应助琪琪扬扬采纳,获得10
19秒前
共享精神应助琪琪扬扬采纳,获得10
19秒前
JamesPei应助dafwfwaf采纳,获得10
19秒前
叶子完成签到,获得积分10
19秒前
xuyun完成签到,获得积分10
19秒前
脑洞疼应助木棉采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808