From ITDL to Place2Vec

文字2vec 计算机科学 相似性(几何) 情报检索 透视图(图形) 空格(标点符号) 主题模型 人工智能 词(群论) 数据科学 机器学习 数据挖掘 嵌入 操作系统 图像(数学) 哲学 语言学
作者
Bo Yan,Krzysztof Janowicz,Gengchen Mai,Song Gao
标识
DOI:10.1145/3139958.3140054
摘要

Understanding, representing, and reasoning about Points Of Interest (POI) types such as Auto Repair, Body Shop, Gas Stations, or Planetarium, is a key aspect of geographic information retrieval, recommender systems, geographic knowledge graphs, as well as studying urban spaces in general, e.g., for extracting functional or vague cognitive regions from user-generated content. One prerequisite to these tasks is the ability to capture the similarity and relatedness between POI types. Intuitively, a spatial search that returns body shops or even gas stations in the absence of auto repair places is still likely to satisfy some user needs while returning planetariums will not. Place hierarchies are frequently used for query expansion, but most of the existing hierarchies are relatively shallow and structured from a single perspective, thereby putting POI types that may be closely related regarding some characteristics far apart from another. This leads to the question of how to learn POI type representations from data. Models such as Word2Vec that produces word embeddings from linguistic contexts are a novel and promising approach as they come with an intuitive notion of similarity. However, the structure of geographic space, e.g., the interactions between POI types, differs substantially from linguistics. In this work, we present a novel method to augment the spatial contexts of POI types using a distance-binned, information-theoretic approach to generate embeddings. We demonstrate that our work outperforms Word2Vec and other models using three different evaluation tasks and strongly correlates with human assessments of POI type similarity. We published the resulting embeddings for 570 place types as well as a collection of human similarity assessments online for others to use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助150
1秒前
获野千发布了新的文献求助10
1秒前
向日葵完成签到,获得积分10
3秒前
gao完成签到 ,获得积分10
4秒前
小梦完成签到,获得积分10
4秒前
ghjghk发布了新的文献求助10
5秒前
一二完成签到,获得积分10
7秒前
LLLKJ完成签到,获得积分10
8秒前
lxcy0612完成签到,获得积分10
9秒前
zhangxin完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
晓风完成签到,获得积分10
11秒前
小点完成签到 ,获得积分10
11秒前
获野千完成签到 ,获得积分10
13秒前
鸽子完成签到 ,获得积分10
14秒前
15秒前
彭于彦祖应助科研通管家采纳,获得150
15秒前
彭于彦祖应助科研通管家采纳,获得50
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
日天的马铃薯完成签到,获得积分10
15秒前
lit应助科研通管家采纳,获得10
15秒前
lit应助科研通管家采纳,获得10
15秒前
15秒前
我说我话完成签到 ,获得积分10
16秒前
18秒前
文龙完成签到 ,获得积分10
22秒前
22秒前
量子星尘发布了新的文献求助10
24秒前
Sindy完成签到,获得积分10
25秒前
一水独流完成签到,获得积分10
25秒前
火星上的羞花完成签到,获得积分10
25秒前
関电脑完成签到,获得积分10
25秒前
宝玉发布了新的文献求助10
29秒前
飘飘玲应助宝玉采纳,获得10
33秒前
量子星尘发布了新的文献求助10
34秒前
40秒前
世外完成签到,获得积分10
40秒前
克泷完成签到 ,获得积分10
43秒前
peng完成签到 ,获得积分10
44秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044644
求助须知:如何正确求助?哪些是违规求助? 4274226
关于积分的说明 13323416
捐赠科研通 4087927
什么是DOI,文献DOI怎么找? 2236588
邀请新用户注册赠送积分活动 1244008
关于科研通互助平台的介绍 1172033