From ITDL to Place2Vec

文字2vec 计算机科学 相似性(几何) 情报检索 透视图(图形) 空格(标点符号) 主题模型 人工智能 词(群论) 空间认知 数据科学 机器学习 数据挖掘 认知 嵌入 生物 操作系统 图像(数学) 哲学 神经科学 语言学
作者
Bo Yan,Krzysztof Janowicz,Gengchen Mai,Song Gao
标识
DOI:10.1145/3139958.3140054
摘要

Understanding, representing, and reasoning about Points Of Interest (POI) types such as Auto Repair, Body Shop, Gas Stations, or Planetarium, is a key aspect of geographic information retrieval, recommender systems, geographic knowledge graphs, as well as studying urban spaces in general, e.g., for extracting functional or vague cognitive regions from user-generated content. One prerequisite to these tasks is the ability to capture the similarity and relatedness between POI types. Intuitively, a spatial search that returns body shops or even gas stations in the absence of auto repair places is still likely to satisfy some user needs while returning planetariums will not. Place hierarchies are frequently used for query expansion, but most of the existing hierarchies are relatively shallow and structured from a single perspective, thereby putting POI types that may be closely related regarding some characteristics far apart from another. This leads to the question of how to learn POI type representations from data. Models such as Word2Vec that produces word embeddings from linguistic contexts are a novel and promising approach as they come with an intuitive notion of similarity. However, the structure of geographic space, e.g., the interactions between POI types, differs substantially from linguistics. In this work, we present a novel method to augment the spatial contexts of POI types using a distance-binned, information-theoretic approach to generate embeddings. We demonstrate that our work outperforms Word2Vec and other models using three different evaluation tasks and strongly correlates with human assessments of POI type similarity. We published the resulting embeddings for 570 place types as well as a collection of human similarity assessments online for others to use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Diana完成签到,获得积分10
3秒前
小小发布了新的文献求助10
4秒前
XinXin完成签到,获得积分10
4秒前
循环bug完成签到,获得积分10
5秒前
7秒前
匆匆完成签到 ,获得积分10
8秒前
当当发布了新的文献求助10
8秒前
Wednesday Chong完成签到 ,获得积分10
10秒前
10秒前
djl1n发布了新的文献求助10
11秒前
Puddingo完成签到,获得积分10
15秒前
高高的山兰完成签到 ,获得积分10
17秒前
mz完成签到,获得积分10
17秒前
18秒前
25秒前
默默的素阴完成签到 ,获得积分10
27秒前
28秒前
29秒前
chan完成签到 ,获得积分10
29秒前
29秒前
不辞完成签到 ,获得积分10
30秒前
科研通AI2S应助郝宝真采纳,获得10
31秒前
可爱的函函应助姜维采纳,获得10
33秒前
35秒前
卜念发布了新的文献求助10
36秒前
monster发布了新的文献求助10
38秒前
研友_VZG7GZ应助科研通管家采纳,获得10
39秒前
研友_VZG7GZ应助科研通管家采纳,获得10
39秒前
隐形曼青应助科研通管家采纳,获得10
40秒前
zaaa完成签到,获得积分10
40秒前
小蘑菇应助科研通管家采纳,获得10
40秒前
small应助科研通管家采纳,获得10
40秒前
小二郎应助科研通管家采纳,获得30
40秒前
清脆的飞丹完成签到,获得积分10
41秒前
hnlgdx完成签到,获得积分20
46秒前
深情电脑完成签到,获得积分10
49秒前
可爱的香岚完成签到,获得积分10
52秒前
传奇3应助马上秃头采纳,获得20
53秒前
53秒前
穗禾完成签到 ,获得积分20
55秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162968
求助须知:如何正确求助?哪些是违规求助? 2813989
关于积分的说明 7902647
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631546
版权声明 602187