聚丙烯腈
材料科学
纳米纤维
摩擦电效应
钛酸钡
压电
压力传感器
纳米发生器
静电纺丝
压阻效应
复合材料
标度系数
电子皮肤
触觉传感器
光电子学
纳米技术
制作
计算机科学
电介质
机械工程
机器人
人工智能
病理
工程类
替代医学
聚合物
医学
作者
Gengrui Zhao,Xiaodi Zhang,Xin Cui,Shu Wang,Zhirong Liu,Linhong Deng,Anhui Qi,Xiran Qiao,Lijie Li,Caofeng Pan,Yan Zhang,Linlin Li
标识
DOI:10.1021/acsami.8b02564
摘要
To meet the growing demands in flexible and wearable electronics, various sensors have been designed for detecting and monitoring the physical quantity changes. However, most of these sensors can only detect one certain kind of physical quantity based on a single mechanism. In this paper, we have fabricated a multifunctional sensor made from carbonized electrospun polyacrylonitrile/barium titanate (PAN-C/BTO) nanofiber film. It can detect two physical quantities (pressure and curvature), independently and simultaneously, by integrating piezoresistive, piezoelectric, and triboelectric effects. For flex sensing with the impedance change of PAN-C/BTO nanofiber films during bending, it had a sensitivity of 1.12 deg–1 from 58.9° to 120.2° and a working range of 28°–150°. For self-powered force sensing, it had a gauge factor of 1.44 V·N–1 within the range of 0.15–25 N. The sensor had a long stability over 60 000 cycles at both sensing modes. The inclusion of barium titanate nanoparticles (BTO NPs) into the nanofiber film had an over 2.4 times enhancement of sensitivity for pressure sensing because of the synergy of piezoelectric and triboelectric effects. On the basis of multifunction and modularity, a series of potential applications of the sensor were demonstrated, including sensing human's swallowing, walking gaits, finger flexure, and finger-tapping. The self-powered flexible dual-mode sensor has great application potential in human-computer interactive and smart wearable sensing systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI