纳米载体
卡铂
卵巢癌
癌细胞
共焦显微镜
材料科学
拉曼光谱
生物物理学
壳聚糖
纳米技术
癌症
癌症研究
药物输送
化学
生物
细胞生物学
化疗
生物化学
顺铂
光学
物理
遗传学
作者
Monica Potara,Timea Nagy-Simon,Ana-Maria Craciun,Sorina Suarasan,Emilia Licărete,Florica Imre-Lucaci,Simion Aștilean
标识
DOI:10.1021/acsami.7b10075
摘要
Ovarian cancer is a common cause of cancer death in women and is associated with the highest mortality rates of all gynecological malignancies. Carboplatin (CBP) is the most used cytotoxic agent in the treatment of ovarian cancer. Herein, we design and assess a CBP nanotherapeutic delivery system which allows combinatorial functionalities of chemotherapy, pH sensing, and multimodal traceable properties inside live NIH:OVCAR-3 ovarian cancer cells. In our design, a pH-sensitive Raman reporter, 4-mercaptobenzoic acid (4MBA) is anchored onto the surface of chitosan-coated silver nanotriangles (chit-AgNTs) to generate a robust surface-enhanced Raman scattering (SERS) traceable system. To endow this nanoplatform with chemotherapeutic abilities, CBP is then loaded to 4MBA-labeled chit-AgNTs (4MBA-chit-AgNTs) core under alkaline conditions. The uptake and tracking potential of CBP-4MBA-chit-AgNTs at different Z-depths inside live ovarian cancer cells is evaluated by dark-field and differential interference contrast (DIC) microscopy. The ability of CBP-4MBA-chit-AgNTs to operate as near-infrared (NIR)-responsive contrast agents is validated using two noninvasive techniques: two-photon (TP)-excited fluorescence lifetime imaging microscopy (FLIM) and confocal Raman microscopy (CRM). The most informative data about the precise localization of nanocarriers inside cells correlated with intracellular pH sensing is provided by multivariate analysis of Raman spectra collected by scanning CRM. The in vitro cell proliferation assay clearly shows the effectiveness of the prepared nanocarriers in inhibiting the growth of NIH:OVCAR-3 cancer cells. We anticipate that this class of nanocarriers holds great promise for application in image-guided ovarian cancer chemotherapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI