共聚物
硼酸
材料科学
弹性体
共单体
自愈水凝胶
硼
单体
聚合物
水溶液
高分子化学
极限抗拉强度
化学工程
复合材料
有机化学
化学
工程类
作者
Yiming Chen,Wangqiu Qian,Ran Chen,Hongji Zhang,Xiaojie Li,Dongjian Shi,Weifu Dong,Mingqing Chen,Yue Zhao
出处
期刊:ACS Macro Letters
[American Chemical Society]
日期:2017-09-28
卷期号:6 (10): 1129-1133
被引量:54
标识
DOI:10.1021/acsmacrolett.7b00611
摘要
Self-healable hydrogels based on the dynamically reversible boronate ester or borate ester bonds are usually prepared by reacting boronic acid or boric acid with diol compounds or polymer-like poly(vinyl alcohol) bearing a hydroxyl group in each monomer unit. Herein, we report a finding that not only facilitates the preparation but also extends the range of self-healable hydrogels of this kind. By simply copolymerizing commercially available N,N-dimethylacrylamide and 2-hydroxyethyl acrylate (8:2 weight ratio) in the presence of boric acid in a one-pot fashion, the resulting random copolymer can gel in aqueous solution at pH = 9, giving rise to a solid hydrogel (tensile strength >0.5 MPa at water content of 30%) that, on the one hand, can autonomously self-heal (near 100% fracture stress recovery within 48 h in air at room temperature) and, on the other hand, shows the characteristics of elastomer (little stress relaxation under loading and small residual deformation after unloading upon repeated 300% elongation cycles). The results reveal that it can be sufficient to have a random copolymer with comonomer units bearing hydroxyl groups for reacting with boric acid to generate dynamically reversible borate ester bonds. This finding thus points out a general, facile, and cost-effective method to obtain and explore new borate ester bond-based self-healable hydrogels.
科研通智能强力驱动
Strongly Powered by AbleSci AI